

\mathcal{RMS} -Net:

Regression and Masking for Soccer Event Spotting

Matteo Tomei¹, Lorenzo Baraldi¹, Simone Calderara¹, Simone Bronzin², Rita Cucchiara¹

¹University of Modena and Reggio Emilia (name.surname@unimore.it)

²Metaliquid (name.surname@meta-liquid.com)

Centro Interdipartimentale di Ricerca Softech: ICT per le Imprese

Action Spotting:

Action Spotting consists in finding the anchor time (or spot) that identifies an event [1].

Since perfectly spotting a target is intrinsically arduous, a temporal tolerance δ is introduced to consider an event spotted by a candidate.

SoccerNet [1] dataset:

- 500 full broadcast soccer matches
- 300 games for train, 100 for val, 100 for test
- 3 classes (Goal, Card, Substitution)

Related Works:

- SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos [1]
- Improved soccer action spotting using both audio and video streams [2]
- Event detection in coarsely annotated sports videos via parallel multi-receptive field 1d convolutions [3]
- A context-aware loss function for action spotting in soccer videos [4]
- [1] S. Giancola, M. Amine, T. Dghaily, and B. Ghanem, "Soccernet: A scalable dataset for action spotting in soccer videos", CVPR Workshops, 2018.
- [2] B. Vanderplaetse and S. Dupont, "Improved soccer action spotting using both audio and video streams", CVPR Workshops, 2020.
- [3] K. Vats, M. Fani, P. Walters, D. A. Clausi, and J. Zelek, "Event detection in coarsely annotated sports videos via parallel multi-receptive field 1d convolutions" CVPR Workshops, 2020.
- [4] A. Cioppa, A. Deliege, S. Giancola, B. Ghanem, M. V. Droogenbroeck, R. Gade, and T. B. Moeslund, "A context-aware loss function for action spotting in soccer videos", CVPR, 2020.

Action Spotting:

- 1. Consider a video clip $X = (x_1, x_2, ..., x_T)$ from a match.
- 2. Minimize the cross-entropy loss between predicted event class p_e and ground truth event e.
- 3. Minimize the squared-error loss between predicted relative offset *o* and ground truth relative offset *r*.
- 4. Convert relative timestamp to absolute timestamp.

Data Sampling and Balancing during Training:

GOAL

Masking Strategy:

Since the majority of visual cues that contribute to the recognition of an event occur just after the A1111 event [1], we propose a masking function which encourages the network to learn robust features after the event. During training, our function randomly replaces the frames before an event with a background clip, as follows:

$$M(p,q)(X) = egin{cases} (z_1,\ldots,z_{t-s-1},x_{t-s},\ldots,x_T)\ ext{if } r \leq q, u < p\ (x_1,\ldots,x_{t-s-1},x_{t-s},\ldots,x_T)\ ext{otherwise}, \end{pmatrix}$$

Where:

- *p* is a fixed masking probability
- q is the maximum relative temporal offset in the clip to allow masking
- *s* is the starting absolute timestamp of the video clip
- *r* is the relative timestamp of the event in the clip
- $(z_i)_{i=1}^{t-s-1}$ is a sequence of frames selected from a random background clip
- u is a random value sampled from the uniform distribution U[0,1]

Evaluation Metric:

Given a temporal tolerance δ , the AP for a class is computed by considering a prediction as positive if the distance from its closest ground truth spot is less than δ . The mAP is the average of the AP of each class. The **Average-mAP** is the area under the mAP curve obtained by varying δ from 5 to 60 seconds.

Per-class Average Precision, as a function of spotting tolerance.

Comparison with baselines and state-of-the-art approaches using ResNet-152 features released with SoccerNet [1].

Clip length (s)	Features	Val Avg-mAP	Test Avg-mAP
5	ResNet-152 (PCA)	-	34.5
60	ResNet-152 (PCA)	-	40.6
20	ResNet-152 (PCA)	-	49.7
20	ResNet-152 (PCA) + Audio	-	56.0
15	ResNet-152 (PCA)	-	60.1
120	ResNet-152 (PCA)	-	62.5
20	ResNet-152 (PCA)	67.8	65.5
	Clip length (s) 5 60 20 20 15 120 20	Clip length (s) Features 5 ResNet-152 (PCA) 60 ResNet-152 (PCA) 20 ResNet-152 (PCA) 20 ResNet-152 (PCA) 15 ResNet-152 (PCA) 120 ResNet-152 (PCA) 20 ResNet-152 (PCA) 120 ResNet-152 (PCA) 20 ResNet-152 (PCA)	Clip length (s) Features Val Avg-mAP 5 ResNet-152 (PCA) - 60 ResNet-152 (PCA) - 20 ResNet-152 (PCA) - 20 ResNet-152 (PCA) - 20 ResNet-152 (PCA) - 15 ResNet-152 (PCA) - 120 ResNet-152 (PCA) - 120 ResNet-152 (PCA) - 20 ResNet-152 (PCA) -

[1] S. Giancola, M. Amine, T. Dghaily, and B. Ghanem, "Soccernet: A scalable dataset for action spotting in soccer videos", CVPR Workshops, 2018.

[2] B. Vanderplaetse and S. Dupont, "Improved soccer action spotting using both audio and video streams", CVPR Workshops, 2020.

[3] K. Vats, M. Fani, P. Walters, D. A. Clausi, and J. Zelek, "Event detection in coarsely annotated sports videos via parallel multi-receptive field 1d convolutions" CVPR Workshops, 2020.

[4] A. Cioppa, A. Deliege, S. Giancola, B. Ghanem, M. V. Droogenbroeck, R. Gade, and T. B. Moeslund, "A context-aware loss function for action spotting in soccer videos", CVPR, 2020.

Performance when varying the masking probability p and the maximum relative temporal offset q for masking.

p	q	Val Avg-mAP	Test Avg-mAP
1/5	0.5	66.8	64.6
1/4	0.5	67.0	64.4
1/3	0.5	67.8	65.5
1/2	0.5	67.1	64.4
1	0.5	64.7	60.7
1/3	0.1	65.5	63.4
1/3	0.25	67.4	64.7
1/3	0.5	67.8	65.5
1/3	0.75	66.5	64.0
1/3	1	64.7	62.6

Performance when varying p, keeping q = 0.5 fixed and masking frames after the event.

p	q	Val Avg-mAP	Test Avg-mAP
1/5	0.5	65.2	62.5
1/4	0.5	64.6	62.9
1/3	0.5	63.8	61.8
1/2	0.5	61.4	60.7
1	0.5	54.1	54.1

Performance of the proposed model when removing key components.

Model	Val Avg-mAP	Test Avg-mAP
Ours	67.8	65.5
Ours w/o uniformly distributed offsets	48.7	46.2
Ours w/o offset regression branch	58.5	55.7
Ours w/o masking	66.5	64.0

Performance analysis when finetuning different variants of ResNet.

Model	Pre-train	Val Avg-mAP	Test Avg-mAP
ResNet-18 + Our	ImageNet	73.8	70.9
ResNet-50 + Our	ImageNet	76.6	74.9
ResNet-152 + Our	ImageNet	77.5	75.1

Thank you for your attention

$\mathcal{RMS}\text{-Net:}$ Regression and Masking for Soccer Event Spotting

Matteo Tomei¹, Lorenzo Baraldi¹, Simone Calderara¹, Simone Bronzin², Rita Cucchiara¹

¹University of Modena and Reggio Emilia (name.surname@unimore.it)

²Metaliquid (name.surname@meta-liquid.com)

