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Motivation

 Task

• Estimating the number of people

• Generating high-quality density maps

(a) Raw image; (b) Ground truth density map

Non-uniform crowd distribution, noisy background, occlusions

 Challenges

• non-uniform crowd distribution, noisy 

background, occlusions

• restricted to the 2D position-wise (or first-

order) attention

• independence between different supervisions



Overview

Pipeline

Our proposed HANet.
The green dotted line is the adaptive compensation loss (ACLoss).



Overview
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Inspired by Kernel Pooling[26], we introduce the High-order Attention Module

(HAM), which captures higher-ordered feature of the target via a kernel function 𝑡 x ：

where ·,· calculates the inner product, 𝑅 is the maximum rank of the polynomial,

𝑊𝑟 is a r-ranked learnable tensor.

Due to the sparsity of the CNN, in order to minimum the storage cost and risk of

overfitting, we decompose 𝑊𝑟 by [55]:

where 𝑊𝑟 is decomposed into the summation of 𝐷𝑟 tensors; 𝑣 is the obtained 

tensor, and 𝛽𝑟,𝑑 is the corresponding weight.
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High-order Attention Module (HAM)

𝑡 x is thus rewritten as:
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HAM with R=3



The Adaptation Compensation Loss (ACLoss)

where B is the batchsize, i is the index of the decoder, ෠𝑌𝑙,𝑖 is the density map of image

l decoded from module i, and 𝑌𝑙,𝑖 is the corresponding ground truth. Furthermore, the

ACLoss can be updated as:
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Our supervision is:
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Where 𝑤𝑙,𝑖 = 𝜑 ෠𝑌𝑙,𝑖−1 − 𝜑 𝑌𝑙,𝑖−1 , 𝜑 · is the Sigmoid function.
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Experimental Results

Top to bottom: input, ground truth density map, inference result of 

CSRNet[6] and that of HANet.

Qualitative
Results



Experimental Results

Ablation
Study

HAM And ACLoss: 



Summary

Contributions

 Establishing a 3D attention mechanism that captures high-order statistics, 

both position-wisely and channel-wisely

 Exploiting the difference between the prediction and the ground truth from 

a higher-level supervision path as an additional attention guidance
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