

Xiyao Liu¹, Ziping Ma¹, Xingbei Guo¹, Jialu Hou¹, Lei Wang¹, Jian Zhang¹, Gerald Schaefer², Hui Fang²

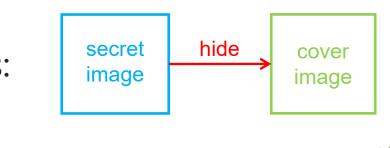
¹School of Computer Science and Engineering Central South University ²Department of Computer Science Loughborough University

Background

Motivation & Key Contribution

Proposed Algorithm & Implemention Details

Experimental Results

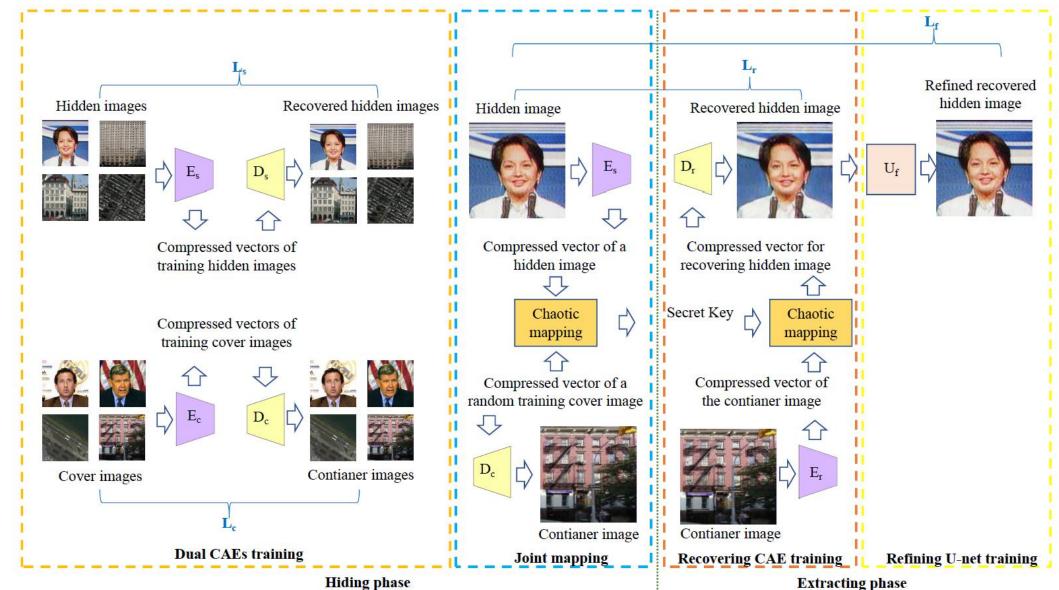


Conclusion

Background

- Image hiding:
 - a information hiding technology to embed secret messages in images
- Classical image hiding methods:

- 0110···0011 hide cover image
- embed messages into insignificant components of cover images.
- low hidden capacity
- DL-base full-image-to-image hiding methods:
 - hide same-sized images in to cover images
 - neither of the errors can be minimised
 - security problems



Motivation & Key Contribution

- Hidden capacity to achieve full-image-to-image hiding
- Trade-off problem in DL-based full-image-to-image hiding methods
- Security in the process of image hiding
- J-CAE for full-image-to-image hiding
 - •fundamentally avoids the quality trade-off problem
 - •the first trial to solve the quality trade-off problem for effective full-image-to-image hiding
 - high quality recovery of the hidden image
 - •employ logistic-logistic chaotic mechanism to enhance the image hiding security.

Proposed Algorithm

Dual CAEs Training

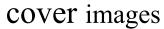
secret images

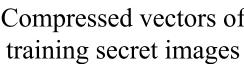
Compressed vectors of

secret images

recovered

Compressed vectors of training cover images





recovered cover images

Joint mapping Compressed vector of a random training cover image secret image container image Compressed vector Chaotic of a secret image mapping secret key **Refining U-Net training** Recovering CAE training Compressed vector Chaotic E_{r} for recovering mapping secret image refined recovered recovered secret image secret image Compressed vector of the cover image

Implemention Details

- ●The Chaotic Mapping System (Section III.A)
- Loss Functions (Section III.A and B)
- Dataset Settings (Section IV.A)
- Training Parameters (Section IV.B)

Implemention Details (Chaotic Mapping System)

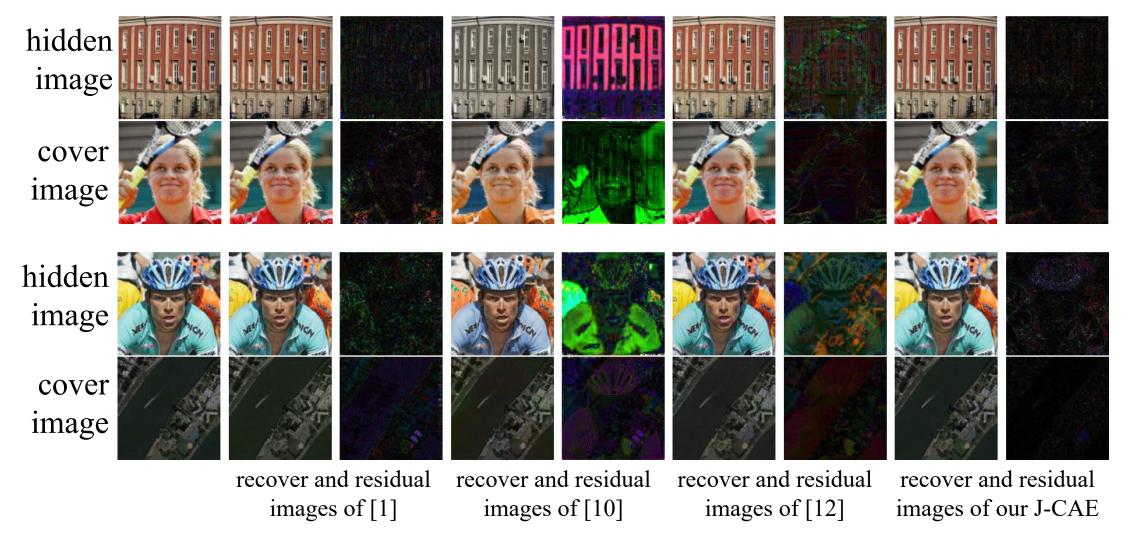
Eq.1
$$F = V_s \oplus V_c$$

Eq.2
$$H = \{h_n, t+1 \le n \le t+512\}$$

Eq.3
$$h_{n+1} = E_{cha}(u, h_n) T(v) - floor(E_{cha}(u, h_n) T(v))$$
where $T(v) = 2^v$ and $E_{cha}(u, h_n) = h_{n+1} = uh_n(1 - h_n)$

Eq.4
$$BH = \{bh_n, 1 \le n \le 512\} \text{ as } bh_n = \begin{cases} 1 & \text{if } h_{n+t} > T \\ 0 & \text{otherwise} \end{cases}$$

Eq.5
$$K = F \oplus BH$$


Implemention Details (Loss Functions)

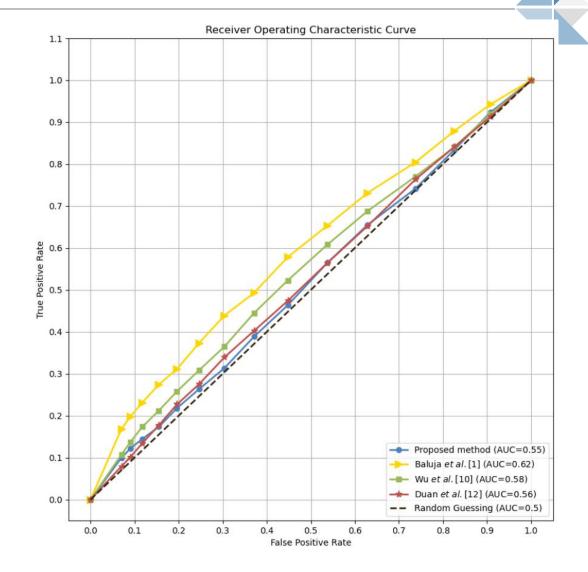
Eq.1
$$L_i = ||x - D_i[E_i(x)]|| - \alpha \log_2 Q[E_i(x)]|$$
where $i \in (s, c)$

Eq.2
$$L_r = ||x_s - D_r[E_r(x_c)] \oplus K \oplus BH|| -\alpha \log_2 Q[E_r(x_c)]$$

Eq.3
$$L_f = ||x_s - x_s'||$$

Experimental Results (Subjective Evaluation)

[1] S. Baluja, "Hiding images within images," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 7, pp. 1685–1697, 2019.
[10] P. Wu, Y. Yang, and X. Li, "Stegnet: Mega image steganography capacity with deep convolutional network," Future Internet, vol. 10, no. 6, p. 54, 2018.
[12] X. Duan, K. Jia, B. Li, D. Guo, E. Zhang, and C. Qin, "Reversible image steganography scheme based on a u-net structure," IEEE Access, vol. 7, pp. 9314–9323, 2019.


Experimental Results (Objective Evaluation & Security Analysis)

	cover image			
	Baluja et al. [1]	Wu et al. [10]	Duan <i>et al</i> . [12]	J-CAE
pixel error	3.1012	4.4224	2,8302	1.7881
PSNR	31.7526	29.7046	37.3406	40.4039
SSIM	0.9704	0.9653	0.9893	0.9921
	hidden image			
	Baluja et al. [1]	Wu et al. [10]	Duan <i>et al</i> . [12]	J-CAE
pixel error	2.9329	7.4876	5.5404	1.9547
PSNR	34.2448	27.2817	31.9353	39.5338
SSIM	0.9731	0.9458	0.9728	0.9890

^[10] P. Wu, Y. Yang, and X. Li, "Stegnet: Mega image steganography capacity with deep convolutional network," Future Internet, vol. 10, no. 6, p. 54, 2018.

[12] X. Duan, K. Jia, B. Li, D. Guo, E. Zhang, and C. Qin, "Reversible image steganography scheme based on a u-net structure," IEEE Access, vol. 7, pp. 9314–9323, 2019.

Conclusion

- J-CAE, a novel DL-based full-image-to-image hiding algorithm
 - based on Joint Compressive Autoencoders
- achieves high hidden capacity and recover hidden images with smaller errors
- achieves significantly better visual imperceptibility
 - by mapping feature representations
- outperforms three state-of-the-art image hiding algorithms
 - on both subjective and objective comparasion

Thanks For Listening

If you have any questions, you can email us.

lxyzoewx@csu.edu.cn

h.fang@lboro.ac.uk