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k-means problem

I It is well-known due to the Lloyd algorithm [Lloyd, 1982]
(a.k.a k-means algorithm)

I The k-means problem is NP-hard

Definition (k-means problem)

Given n data points X ⊆ Rd and a set of k points C ⊆ Rd , where
d is the dimension of the data point. An objective function is
defined as follows,

φC (X ) =
∑
x∈X

d2(x ,C ) (1)

where d(x ,C ) = min
c∈C
‖x − c‖ is the distance of a point to a set.

The k-means problem is to find the optimal C such that the
φC (X ) is minimized given X .



The Solution Quality

Definition (Solution Quality 1)

Let α ≥ 1. A set C of k centers is an α approximation solution of
k-means if

φC (X ) ≤ αφOPT(X ) (2)

φOPT(X ) is the minimal objective.

Definition (Solution Quality 2)

Let α ≥ 1 and β > 0. A set C of k centers is a β-bad
α-approximation solution of k-means if

φC (X ) > (α + β)φOPT(X ) (3)

Otherwise, C is said to be a β-good α-approximation.



Lloyd Algorithm

1. A set of k centers are initialized using uniform random
sampling.

2. Each point is assigned to its nearest center, which forms k
clusters.

3. The mean point of each cluster is computed, which is used as
the new center of the cluster.

4. Repeat the step 2 and 3 multiple times.

However,

I First, there is no theoretical guarantee for the solution quality.

I Second, if the number of points is very large, it could be
infeasible to run this algorithm.
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Problems to Investigate

Can we design an efficient algorithm (sublinear time) and the
clustering quality is also theoretically guaranteed (constant
approximation ratio)?
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Methods Overview

Overall, we use uniform sampling to sample a set of points and we
run a quality guaranteed algorithm on this subset to achieve the
goal.



Clustering based on Uniform Sampling

Algorithm 1: Clustering based on uniform sampling

Input: dataset X , number of clusters k , number of points to
sample s, clustering algorithm Ac

Output: k centers C
S ← Sample s points uniformly without replacement
C ← Solve the k-means problem on S with Ac

return k centers C

Theorem (quality of Algorithm 1)

Let 0 < δ < 1/2, α ≥ 1, β > 0 be approximation parameters. Let
C be the set of centers returned by Algorithm 1 and Ac is an α
approximation algorithm. Suppose we sample s points uniformly
without replacement such that,

s ≥ ln(
1

δ
)(1 +

1

n
)/(

β2m2

2∆2α2
+

ln(1/δ)

n
)

we have
φC (X ) ≤ 4(α + β)φOPT(X )

with probability at least 1− 2δ, where ∆ = max
i ,j
‖vi − vj‖2 is the

squared diameter of the data, m = φOPT(X )/n is the average of
the optimal objective.



Our Contribution

I A sharper bound for the uniform sampling algorithm is proved.

I A further proof indicates that this algorithm runs in
poly-logarithmic time given mild assumptions on datasets.



A Sharper Bound

Theorem (a sharper bound of uniform sampling)

Let 0 < δ < 1/2, α ≥ 1, β > 0 be approximation parameters. Let
C be the set of centers returned by Algorithm 1 and Ac is an α
approximation algorithm. Suppose we sample s points uniformly
without replacement such that,

s ≥ ln(
1

δ
)(1 +

1

n
)/(

β2m2

2∆2α2
+

ln(1/δ)

n
)

we have
φC (X ) ≤ (α + β)φOPT(X )

with probability at least 1− 2δ, where ∆ = max
i ,j
‖vi − vj‖2 is the

squared diameter of the data, m = φOPT(X )/n is the average of
the optimal objective.

The big picture of the proof:
1. Show that the sample set S will be a good representative of X .

2. Suppose C is a bad solution for X , then the sample set S will be a good
representative of X with a low probability.

3. According to 1 and 2, C will be a good solution for X .



A Poly-Log Time Algorithm

Assume that a dataset is sampled i.i.d. according to a probability
distribution F

I F has finite variance and exponential tails, i.e. ∃c , t such that
P[d(x , µ(F )) > a] ≤ ce−at , where µ(F ) is the mean of F .

I F ’s minimal and maximal density on a hypersphere with non
zero probability mass is bounded by a constant.

Theorem (efficiency of uniform sampling)
Let 0 < δ < 1/2, α ≥ 1, β > 0 be approximation parameters. Assume
above hold, and let C be the set of centers returned by Algorithm 1, we
have the following

φC (X ) ≤ (α + β)φOPT(X )

with probability at least 1− 2δ if we sample O(ln( 1
δ )α2

β2 k
2 log4 n) points



Baseline Algorithms

I Since the uniform sampling algorithm is efficient and provably good, we
design experiments to verify this.

I Baselines are K-MC2 [Bachem et al., 2016] and Double-K-MC2 sampling.

I In previous works [Bahmani et al., 2012], the sampled points are weighted
to obtain a better quality. Hence, we use the K-MC2 method to sample a
set of points as weights and the method is called the Double-K-MC2.

Algorithm 2: Double-K-MC2 sampling

Input: dataset X , # of points to sample s, chain length u
Output: k centers C
S1 ← Sample s points from V via K-MC2

V ′ ← Remove S1 from V
S2 ← Sample s points from V ′ via K-MC2

For point si ∈ S1, let wi be the number of points in S2 closer
to si than to any other points in S1

Let wi + 1 be the weight of si
C ← Solve the weighted k-means problem on S1 with an α

approximation algorithm
return k centers C



Traditional Clustering

Table 1: data size n, number of clusters k, dimension d

datasets n k d

a2 5250 35 2
a3 7500 50 2

b2-random-10 10000 100 2
b2-random-15 15000 100 2
b2-random-20 20000 100 2

KDD 145751 200 74
RNA 488565 200 8

Poker Hand 1000000 200 10

I chain length: u = 200

I sampling size: 1.5 log2 n and 0.7 log4 n for Double-K-MC2 and uniform sampling

I α approximation algorithm: (weighted) k-means++ with Lloyd

I evaluation metrics: number of distance evaluations and k-means objective

I algorithms are run 40 times repeatedly with different initial random seeds



Results

1. The time cost of uniform
sampling is about 10 times
higher than that of K-MC2

and it increases slowly with
respect to the data size.
The k-means objective of
uniform sampling is roughly
60% of the objective of
K-MC2.

2. Double-K-MC2 achieves a
better clustering quality
compared with K-MC2 and
a lower time cost compared
with uniform sampling.

3. Double-K-MC2 could be the
first choice if you prefer a
good clustering quality with
reasonable time costs. For
the best quality, uniform
sampling is recommended.

(a) the number of distance
evaluations on synthetic data

(b) k-means objective on synthetic
data

(c) the number of distance
evaluations on real data

(d) k-means objective on real data

Figure 1: k-means objective and time cost versus the number of points



Image Segmentation

Table 2: data size n, number of clusters k

datasets n k

baby 900(30 * 30) 5
kitten 3600(60 * 60) 5
bear 14400(120 * 120) 5

I The kernel versions of uniform sampling, Double-K-MC2, and K-MC2.

I Construct an affinity matrix A via the approach in Stella and Shi [2003] and find
the nearest positive definite matrix K as the kernel.

I chain length: u = 200

I sampling size: 0.25 log2 n and 0.4 log4 n for Double-K-MC2 and uniform
sampling

I α approximation algorithm: (weighted) kernel k-means++ with kernel Lloyd

I evaluation metric: number of distance evaluations and kernel k-means objective

I algorithms are run 30 times repeatedly with different initial random seeds



Results

1. The kernel uniform
sampling has the best
clustering quality while the
growth of the time cost is
not too rapid.

2. The kernel Double-K-MC2

has a similar clustering
quality with much lower
time cost compared with
the kernel uniform sampling.

3. Thus, we recommend using
kernel Double-K-MC2 if the
quality is your major
concern. For a more
efficient result, the kernel
K-MC2 is a better choice.

(a) the number of distance evaluations
on image data

(b) kernel k-means objective on image
data

Figure 2: kernel k-means objective and time cost versus the number of
points
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Summary

I We improved the analysis of uniform sampling based k-means
clustering algorithm by two folds. First, a sharper bound of
solution quality is derived. Second, the algorithm runs in
poly-log time given mild assumptions of datasets. We then
proposed Double-K-MC2 sampling to weigh sample points.

I Experiments demonstrate that the uniform sampling based
algorithm achieves a much better clustering quality while not
spend too much time. The Double-K-MC2 almost runs as
efficient as K-MC2 and the solution quality is slightly better.

I Codes and Datasets:
https://github.com/ryh95/uniform-double-kmc2-sampling

https://github.com/ryh95/uniform-double-kmc2-sampling


Questions?
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