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In this work, we provide a number of datasets that will be made publicly available to
facilitate fair comparisons.

Our main contributions are:

1) A novel train/test dataset - BODY-fit - for benchmarking silhouette based body
measurement methods. The dataset is obtained from the local clothing company who have
2,675 female and 1,474 male 3D scans of their customers.

2) A novel testing dataset - BODY-rgb - of recently captured RGB images of 86 males and
108 females and tape measured ground truth.

3) A strong baseline which achieves good accuracy on the new datasets and the existing

data - CAESAR-fit - provided by Pishchulin et.al [1] and for which we define train/test splits
files and generated silhouette images.

[1] Pishchulin, Leonid, et al. "Building statistical shape spaces for 3d human modelling." Pattern Recognition 67 (2017): 276-286.
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Fig. 1. Examples from the proposed benchmarks, “BODY-fit” and “BODY-
rgb”, and the 16 body measurements (A-P) used in the method comparison.
The blue meshes represent the original BODY scans containing missing
points and noise (mainly in the head, feet and hand regions). The yellow
meshes result from non-rigid ICP fitting of the mean shape template from
the CAESAR fits datasets [24] so that the both datasets now share the same
topology. RGB 1mages were captured using Apple 1Pad.
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Related Datasets
Dataset Description Available

UMTRI [2] was collected to find the safest sitting posture of young NG
children in cars.

ANSUR 1988 contain 3D scans and 93 tape measured body measurements of
US Army Force soldiers. ANSUR 2012 contains 4,082 male and No

ANSUR 2012 . .
1,986 female subjects of varying age.
contains 3D scans of 2,400 U.S. and Canadian and 2,000 Commercial

CAESAR [3] . . .
European civilians with tape measured ground truth. available
Pishchulin et.al. [1] and Yang et.al. [4] performed mesh

CAESAR-fit registration on the CAESAB scans tc? b.rlng them in Ves
correspondence and use pre-defined geodesic distances as the
ground truth.

Synthetic to learn a statistical model from CAESAR dataset to synthesize

datasets training data.

[2] Kim, K. Han, et al. Development of virtual toddler fit models for child safety restraint design. University of Michigan, Ann Arbor, Transportation Research Institute, 2015.
[3] Robinette, Kathleen M., et al. Civilian american and european surface anthropometry resource (caesar), final report. volume 1. summary. SYTRONICS INC DAYTON OH, 2002.
[4] Yang, Yipin, et al. "Semantic parametric reshaping of human body models." 2014 2nd International Conference on 3D Vision. Vol. 2. IEEE, 2014.
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Related Methods

- Earlier works use engineered features and regression [5], [6], [7], [8], [9], [10], [11].

- Recently deep architectures have become more popular.
- In [12] the hand-crafted features are extracted from silhouettes and mapped to the shape PCA
(Principal Component Analysis) sub-space via the Random Forest regressor, then the body
measurements are obtained from the reconstructed meshes.

- HS-NET [13] learns a global mapping from silhouettes to shape parameters by training CNNs.

- HKS-Net [14] Dibra et al. firstly construct a rich body shape representation space from the
pose invariant Heat Kernel Signature (HKS) descriptors, then learn a mapping from silhouettes
to this embedded space.

[5] L. Sigal, A. Balan, and M. J. Black, “Combined discriminative and generative articulated pose and non-rigid shape estimation,” in Advances in neural information
processing systems, 2008, pp. 1337-1344.

[ 6] Chen, T.-K. Kim, and R. Cipolla, “Inferring 3d shapes and deformations from single views,” in European Conference on Computer Vision.Springer, 2010, pp. 300-313

[ 7] Chen, D. P. Robertson, and R. Cipolla, “A practical system for modelling body shapes from single view measurements.” inBMVC,2011.

[ 8] Chen, T.-K. Kim, and R. Cipolla, “Silhouette-based object phenotype cognition using 3d shape priors,” inComputer Vision (ICCV), 2011IEEE International Conference
on. IEEE, 2011, pp. 25-32

[9] J. Boisvert, C. Shu, S. Wuhrer, and P. Xi, “Three-dimensional human shape inference from silhouettes: reconstruction and validation,”Machine vision and
applications, vol. 24, no. 1, pp. 145-157, 2013

[10] A. Tsoli, M. Loper, and M. Black, “Model-based anthropometry: Predicting measurements from 3d human scans in multiple poses,” inWinterConference on
Applications of Computer Vision (WACV), 2014

[11] S. Yan, J. Wirta, and J.-K. Kdmaréinen, “Anthropometric clothing measurements from 3d body scans,”Machine Vision and Applications, vol. 31, no. 1, p. 7, 2020.

[12] Dibra, Endri, et al. "Shape from selfies: Human body shape estimation using cca regression forests." European conference on computer vision. Springer, Cham, 2016.

[13] Dibra, Endri, et al. "Hs-nets: Estimating human body shape from silhouettes with convolutional neural networks." 2016 fourth international conference on 3D vision (3DV).
IEEE, 2016.

[14] Dibra, Endri, et al. "Human shape from silhouettes using generative hks descriptors and cross-modal neural networks." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017.
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Proposed Datasets

BODY-fits
1) A local clothing company NOMOsq provided us a dataset of real 3D body scans of
people wearing only tight underwear. The scans were captured using a commercial TC2
device and software’.
2) The scanner outputs a triangulated mesh structure in the regular OBJ file format. Each
mesh contains on average 57,000 vertices and around 113,000 faces.
3) Similar to the original CAESAR scans also our scans are of various qualities and contain
holes, in particular, near the feet, hand and head regions. To compensate the missing
regions, the scans were converted to watertight meshes by applying the non-rigid ICP
algorithm of Amberg et al.[15] and a 3D body template.

BODY-rgb
1) In addition to the 3D scan datasets we collected a small dataset of real RGB images of
people in underwear.
2) 8-20 body measurements were measured using a tape measure.
3) The dataset consists of 86 male and 108 female subjects.
4) The approximate capturing distance was 2.4m and the camera height 1.6m.
5) Images of front and side views and their manually segmented silhouettes are included.

1 https://www.tc2.com

[15] Amberg, Brian, Sami Romdhani, and Thomas Vetter. "Optimal step nonrigid ICP algorithms for surface registration." 2007 IEEE Conference on Computer Vision and
Pattern Recognition. |IEEE, 2007.


https://www.tc2.com
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Proposed baseline
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Fig. 2. The overall deep architecture for the baseline method. Blue blocks denote conv kernels, and grey and yellow blocks denote the feature maps. Kernel
sizes and the number of output feature maps are shown as < k X k,C' >.
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Results

TABLE I
COMPARISON OF THE PROPOSED METHOD (OUR) TO THE PRIOR ART (UF-US-2 [14]). UF-US-2 CODE WAS OBTAINED FROM THE ORIGINAL AUTHORS.
METHODS WERE TESTED USING THE SAME TRAIN/TEST SPLITS AND ALL UNITS ARE MILLIMETERS (MM).

CAESAR-fit BODY-fit
Male Female Male Female

Measure UF-US-2 [14] Our UF-US-2 [14] Our UF-US-2 [14] Our UF-US-2 [14] Our

A. Head circ. 10.6 8.6 18.1 15.9 26.0 17.2 13.9 9.2
B. Neck circ. 11.6 9.3 11.6 15.5 13.4 11.8 14.5 14.6
C. Shoulder-b/c len. 9.9 54 10.7 16.3 12.3 11.2 94 7.7
D. Chest. circ. 274 18.2 32.3 24.8 32.1 23.0 26.2 21.7
E. Waist circ. 27.6 17.0 32.0 22.9 42.5 16.5 22.3 17.1
F. Pelvis circ. 22.9 30.6 29.0 24.0 24.8 13.3 20.6 14.7
G. Wrist circ. 9.5 10.7 12.2 13.3 4.2 4.1 4.8 52
H. Bicep circ. 14.9 12.5 16.6 11.5 13.8 114 11.9 9.3
I. Forearm circ. 12.4 7.9 13.5 10.7 8.7 7.2 8.6 8.5
J. Arm len. 8.9 4.2 8.9 13.1 9.2 7.6 7.4 6.4
K. Inside leg len. 9.8 13.5 13.3 14.8 11.9 9.2 10.0 6.5
L. Thigh circ. 21.9 16.5 28.2 16.4 16.9 17.8 14.8 11.6
M. Calf circ. 12.5 7.2 16.0 10.3 11.0 8.8 13.6 9.2
N. Ankle circ. 9.2 4.6 10.6 6.1 6.4 54 7.2 6.1
O. Overall height 14.8 15.1 20.2 34.7 25.8 9.9 17.1 8.6
P. Shoulder breadth 9.0 5.6 9.8 10.9 12.0 9.2 9.3 7.6

[14] Dibra, Endri, et al. "Human shape from silhouettes using generative hks descriptors and cross-modal neural networks." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017 .
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Results

TABLE II
RESULTS FOR BODY-RGB (5-FOLD-CROSS-VALIDATION) WITH TAPE
MEASURED GROUND TRUTH (A, C AND I WERE NOT AVAILABLE).

“IST-STAT” USES A TRAINING SET MEAN AS THE PREDICTION TO ALL

TEST SAMPLES.

BODY-rgb
Measure Male Female
I st-stat Our | -stat Our

A. Head circ. - -

B. Neck circ. 19.8 14.3 20.3 13.8
C. Shoulder-b/c len. - - -

D. Chest. circ. 76.1  36.1 101.1  31.7
E. Waist circ. 976 35.3 121.9 427
F. Pelvis circ. 62.2 355 904 35.5
G. Wrist circ. 8.5 6.6 8.7 6.9
H. Bicep circ. 27.1 209 36.3 199
I. Forearm circ. - - - -
J. Arm len. 279 225 25.1 18.6
K. Inside leg len. 46.7 314 37.1  23.7
L. Thigh circ. 438 42.8 62.7 44.3
M. Calf circ. 23.1 12.8 296 16.7
N. Ankle circ. 12.3 8.5 17.1 13.8
O. Overall height 508 14.3 51.5 19.4

P. Shoulder breadth 21.8 15.8 22.0 19.6

C

- J Tampere University

NOMO.
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Fig. 3. The error histograms of male/female chest and thigh measurements
in our realistic BODY-rgb dataset.
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Results

TABLE IV

TEST SET ACCURACY FOR SPECIFIC NETWORKS (w = 1.0: SINGLE

WEIGHT IS 10.0 AND OTHER MEASUREMENTS 1.0; w = o0: ONLY THE
TARGET MEASUREMENT USED).

C

- J Tampere University

NETWORK FOR ALL MEASUREMENTS: w = 10.0 TARGET MEASUREMENT

CAESAR-fit
Measure w; =1.0 w; =100 w; =0
Male
A. Head circ. 8.6 8.2 11.9
B. Neck circ. 9.3 9.2 10.1
C. Shoulder-b/c len. 5.4 8.1 19.9
D. Chest. circ. 18.2 35.9 34.6
E. Waist circ. 17.0 23.5 24.6
F. Pelvis circ. 30.6 30.2 23.0
G. Wrist circ. 10.7 6.8 8.6
H. Bicep circ. 12.5 14.3 10.6
I. Forearm circ. 7.9 6.9 9.5
J. Arm len. 4.2 15.7 13.1
K. Inside leg len. 13.5 9.6 26.8
L. Thigh circ. 16.5 234 15.5
M. Calf circ. 7.2 8.5 10.9
N. Ankle circ. 4.6 4.5 6.5
O. Overall height 15.1 8.3 22.1
P. Shoulder breadth 5.6 5.7 7.6

NOMO.
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Conclusion

We introduced new benchmark datasets to boost research on methods that can estimate
anthropometric body measurements from image data. The first dataset, BODY-fit,
includes 2,675 female and 1,474 male 3D meshes constructed from the scans of real
subjects. Similar to previous works, a number of geodesic distance paths on the meshes
were measured to provide body measurement ground truth and silhouette images were
generated.

We provide the same measurements, similarly generated silhouettes and train/test splits
for the existing 1,531 female and 1,517 male CAESAR fitted meshes. Our meshes share
the same topology to CAESAR-fit and therefore allows further 3D and 2D cross-dataset
comparisons between them. We introduce another realistic dataset of 86 male and 108
female RGB images and corresponding manually made tape measured ground truth
(BODY-rgb). As a baseline for these datasets we propose a simple yet effective deep
CNN architecture that obtains competitive accuracy on all three datasets.



