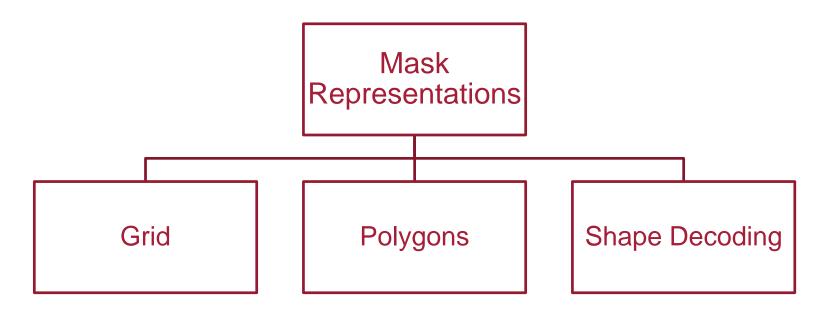
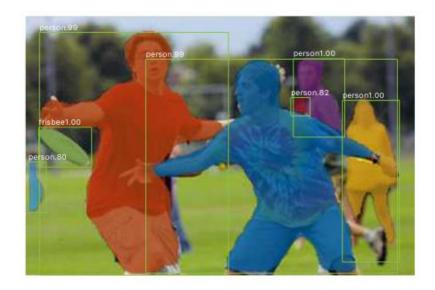
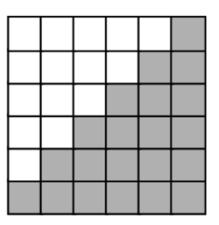


FourierNet: Compact Mask Representation for Instance Segmentation Using Differentiable Shape Decoders


Hamd ul Moqeet Riaz*, Nuri Benbarka* and Andreas Zell

* equal contribution


"We want to find a mask representation for segmentation which is compact and informative"



Grid Representation

- Discretization of the space into grid
- Easy to process with neural networks
- High memory footprint

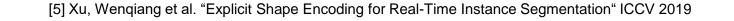
[1] He, Kaiming, et al. "Mask r-cnn." ICCV 2017.

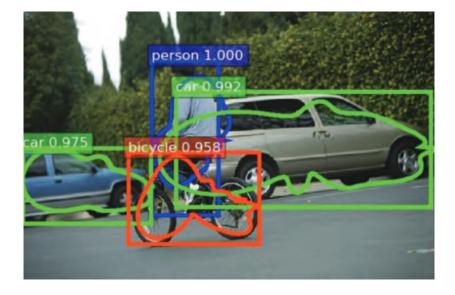

[2] Mescheder, Lars, et al. "Occupancy networks: Learning 3d reconstruction in function space." CVPR 2019.

[2] Mescheder, Lars, et al. "Occupancy networks: Learning 3d reconstruction in function space." CVPR 2019. [3] Xie, Enze et al. "PolarMask: Single Shot Instance Segmentation with Polar Representation" CVPR 2020 [4] Zhou, Xingyi et al. "Bottom-up Object Detection by Grouping Extreme and Center Points" CVPR 2019

Polygons representation

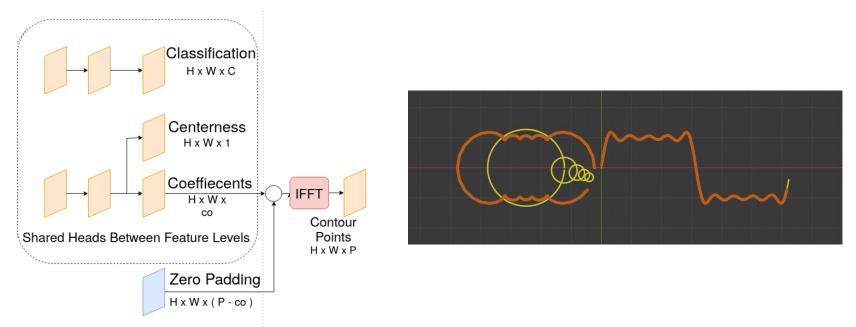
- Represents the contour as points with a fixed connectivity
- Limited number of points.
- Low memory footprint.





Shape Decoding

- Decodes a compressed vector into a mask.
- Approximate mask.
- Lower memory footprint



Our Idea

- Fourier Series as a shape decoder
- Small number of coefficients
- Differentiable
- Monotonically increasing complexity with increasing number of coefficients

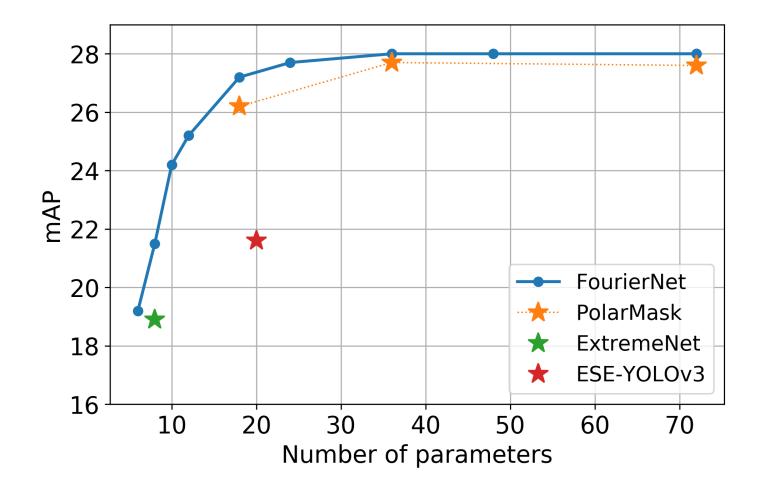
[6] https://medium.com/@contra/drawing-anything-with-fourier-series-using-blender-and-python-c0881e1b738c

2 to 36 coefficients

2 Coefficients

3 Coefficients

4 Coefficients


6 Coefficients

12 Coefficients

36 Coefficients

Coefficients and contour points

Method	B.Bone	Rep.	Param.	mAP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	FPS	GPU
two stage											
Mask RCNN [2]	RX-101	binary grid	784	37.1	60.0	39.4	16.9	39.9	53.5	5.6	1080Ti
PANet [3]	RX-101	binary grid	784	42.0	65.1	45.7	22.4	44.7	58.1	-	-
HTC 5	RX-101	binary grid	784	41.2	63.9	44.7	22.8	43.9	54.6	2.1	TitanXp
one stage											
ESE-Seg-416 [10]	DN-53	shp. encoding	20	21.6	48.7	22.4	-	-	-	38.5	1080 T i
FourierNet-640	R-5 0	shp. encoding	20	24.3	42.9	24.4	6.2	25.9	42.0	26.6	2080Ti
ExtremeNet [12]	HG-104	polygon	<u> </u>	18.9	44.5	13.7	10.4	$\overline{20.4}$	28.3	3.1	
FourierNet	RX-101	shp. encoding	8	23.3	46.7	21.1	10.3	25.2	34.4	6.9	2080Ti
EmbedMask [11]	R -101	binary grid		37.7	59.1	40.3	17.9	40.4	53.0	13.7	$\overline{\mathbf{V}}1\overline{0}0$
YOLACT-700 [8]	R-101	binary grid	†	31.2	50.6	32.8	12.1	33.3	47.1	23.4	TitanXp
PolarMask [9]	RX-101	polygon	36	32.9	55.4	33.8	15.5	35.1	46.3	7.1*	2080Ti
FourierNet	RX-101	shp. encoding	36	30.6	50.8	31.8	12.7	33.7	45.2	6.9	2080Ti

Summary

- FourierNet is a single-stage anchor-free method for instance segmentation.
- We only require small number of coefficients to produce reasonable masks.
- It is a differentiable pipeline and therefore end-to-end trainable.
- FourierNet outperformed all methods which use less than 20 parameters.