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Transfer	Learning
● Leveraging	data	from	a	Source	Domain to	improve	performance	on	a	Target	Domain

● Domain		𝒟:				Feature-space		𝒳 Marginal	probability	distribution	 𝑝 𝐗

● Task		𝒯:										Label-space		𝒴 Predictive	function		𝑓 ⋅

Source 𝑆 Target 𝑇
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Domain Adaptation
Assumptions:

● Same feature space and label-space, i.e.

𝒳! = 𝒳" 𝒴! = 𝒴"
● Misalignment of source and target datasets

● Domain shift is a covariate shift: 𝑝 𝐗! ≠ 𝑝(𝐗")



Deep	two-stream	network	for	DA
● Deep	Neural	Network:		𝑓 𝐱 = ℎ(𝜑 𝐱 )

● Add	penalty	on	latent	space	representation	difference:	ℒ#$%&'( ⋅
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arg min
!!,!"

ℒ#$%&'( + 𝛽ℒ)*+ + 𝛾ℒ)*,

Feature-extractor	 𝜑:𝒳 → 𝒵 (latent	space) Classifier	 ℎ: 𝒵 → 𝒴 (label	space)
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Related	Works	– d-SNE
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Domain	Adaptation	via	
Graph	Embedding
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𝐖 ',0 = Tr 𝚽𝐋𝚽2

Features 𝚽 = 𝜑 𝐗+ 𝜑 𝐗,
Weight	matrix 𝐖
Degree	matrix 𝐃 = ∑0𝐖 ',0

Laplacian	matrix	 𝐋 = 𝐃 −𝐖
Penalty		—||— 𝐁 = 𝐃3 −𝐖3

ℒ!"#$ =
Tr 𝚽𝐋𝚽%

Tr 𝚽𝐁𝚽%

Graph	preserving	criterion

Within-class	spread

Between-class	spread



DAGE-LDA

𝐖 1,3 = :
1, ℓ1 = ℓ3 ∧ 𝒟1 ≠ 𝒟3
0, otherwise

Inspired	by	Linear	Discriminant	Analysis

Class	1
Class	2

Target sample

Source sample

𝐖4
1,3 = :

1, ℓ1 ≠ ℓ3 ∧ 𝒟1 ≠ 𝒟3
0, otherwise



Experiment	setup
Comparison	between	published	methods	is	not	trivial

• Difference	in	network	implementation

• Different	hyperparameter	search	methods

• Different	computational	budget	

• Differences	in	data	sampling	procedure

Bayesian	Optimisation	with	
same	computational	budget

Exact	same	training	pipeline

Re-implementation	using	
publicly	available	code



Results	– Office31

TABLE	II:	Macro	average	classification	accuracy	(%)	for	Office-31	using	a	VGG16	network	pretrained	on	
ImageNet.	The	reported	results	are	the	mean	and	standard	deviation	across	five	runs.	

Experimental	setup
• Pairwise	transfer	among	three	domains
• A	subset	of	data	is	sampled	for	each	run
• Five	runs	are	performed

Domain Amazon	(𝒜) DSLR	(𝒟) Webcam	(𝒲)	

Source	samples/class 20 8 8

Target	samples/class 3 3 3

Classes 31 31 31

TABLE	I:	Office31	dataset	statistics	for	experiment



Results	– MNIST	à USPS

TABLE	III:	Classification	accuracy	(%)	for	MNIST	→	USPS	with	
a	varying	number	of	target	samples	per	class.	

Experimental	setup
• Source	data:	MNIST	with	2000	samples	/	class
• Target	data:	USPS	with	varying	samples	/	class
• A	subset	of	data	is	sampled	for	each	run
• Ten	runs	are	performed



In	conclusion
● Re-evaluation	of	prior	state-of-the	methods	in	a	fair	comparison

● Novel	use	of	Graph	Embedding:	trace-ratio	objective	as	loss	in	deep	NN

● A	simple	LDA-inspired	Domain	Adaptation	loss,	DAGE-LDA

matches	or	beats	the	overall	accuracy	or	prior	state-of-the-art	methods



Thank	You	for	Your	attention


