ICPR2020

Supervised Domain Adaptation using Graph Embedding

Lukas Hedegaard Morsing*, Omar Ali Sheikh-Omar*, and Alexandros Iosifidis Department of Electrical and Computer Engineering, Aarhus University, Denmark lh@eng.au.dk, sheikhomar@mailbox.org, ai@eng.au.dk

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871449

Transfer Learning

- Leveraging data from a *Source Domain* to improve performance on a *Target Domain*
- Domain \mathcal{D} : Feature-space \mathcal{X} Marginal probability distribution $p(\mathbf{X})$
- Task \mathcal{T} : Label-space \mathcal{Y} Predictive function $f(\cdot)$

Target T

Source S

Domain Adaptation

Assumptions:

• Same feature space and label-space, i.e.

 $X_S = X_T$ $Y_S = Y_T$

- Misalignment of source and target datasets
- Domain shift is a *covariate shift*: $p(\mathbf{X}_S) \neq p(\mathbf{X}_T)$

Deep two-stream network for DA

• Deep Neural Network: $f(\mathbf{x}) = h(\varphi(\mathbf{x}))$

Feature-extractor $\varphi: \mathcal{X} \to \mathcal{Z}$ (latent space)

Classifier $h: \mathbb{Z} \to \mathbb{Y}$ (label space)

• Add penalty on latent space representation difference: $\mathcal{L}_{domain}(\cdot)$ $\underset{\theta_{\varphi},\theta_{h}}{\operatorname{arg\,min}} \mathcal{L}_{domain} + \beta \mathcal{L}_{ce}^{S} + \gamma \mathcal{L}_{ce}^{T}$

Related Works - CCSA

"Classification and Contrastive Semantic Alignment Loss" [1]

[1] S. Motiian, M. Piccirilli, D. A. Adjeroh, and G. Doretto, "Unified deep supervised domain adaptation and generalization," in *Proceedings of the IEEE International Conference on Computer Vision*, 2017, pp. 5715–5725

 \mathbf{X}_{s}

Related Works – *d*-SNE

"Domain Adaptation using Stochastic Neighbourhood Embedding" [2]

$$\mathcal{L}_{d-SNE} = \sum_{t \in \mathcal{D}_T} \sup_{s \in \mathcal{D}_S^{(\ell_s = \ell_t)}} \{a \mid a \in d(\mathbf{x}_s, \mathbf{x}_t)\} - \inf_{s \in \mathcal{D}_S^{(\ell_s \neq \ell_t)}} \{b \mid b \in d(\mathbf{x}_s, \mathbf{x}_t)\} \qquad d(\mathbf{x}_s, \mathbf{x}_t) = \|\mathbf{x}_s - \mathbf{x}_t\|_2$$
Target sample
Source sample
$$\mathbf{x}_s$$

$$\mathbf{x}_t$$

$$\mathbf{x}_s$$

[2] X. Xu, X. Zhou, R. Venkatesan, G. Swaminathan, and O. Majumder, "d-sne: Domain adaptation using stochastic neighborhood embedding," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2019, pp. 2497–2506.

Domain Adaptation via Graph Embedding

Graph preserving criterion
$$\sum_{i=1}^{N} \sum_{j=1}^{N} \left\| \boldsymbol{\Phi}^{(i)} - \boldsymbol{\Phi}^{(j)} \right\|_{2}^{2} \mathbf{W}^{(i,j)} = \operatorname{Tr}(\boldsymbol{\Phi} \mathbf{L} \boldsymbol{\Phi}^{\mathsf{T}})$$

 $\mathbf{\Phi} = \begin{bmatrix} \varphi(\mathbf{X}_{\mathsf{S}}) & \varphi(\mathbf{X}_{\mathsf{T}}) \end{bmatrix}$ Features Weight matrix Degree matrix Laplacian matrix Penalty —||—

W

$$D = \sum_{j} W^{(i,j)}$$

$$L = D - W$$

$$B = D_{p} - W_{p}$$

Within-class spread $\mathcal{L}_{\text{DAGE}} = \frac{\text{Tr}(\boldsymbol{\Phi} \mathbf{L} \boldsymbol{\Phi}^{\mathsf{T}})}{\text{Tr}(\boldsymbol{\Phi} \mathbf{B} \boldsymbol{\Phi}^{\mathsf{T}})}$

Between-class spread

DAGE-LDA

Inspired by Linear Discriminant Analysis

$$\mathbf{W}^{(i,j)} = \begin{cases} 1, & \ell_i = \ell_j \land \mathcal{D}_i \neq \mathcal{D}_j \\ 0, & \text{otherwise} \end{cases}$$

$$\mathbf{W}_{p}^{(i,j)} = \begin{cases} 1, & \ell_{i} \neq \ell_{j} \land \mathcal{D}_{i} \neq \mathcal{D}_{j} \\ 0, & \text{otherwise} \end{cases}$$

Experiment setup

Comparison between published methods is not trivial

- Difference in network implementation
- Different hyperparameter search methods
- Different computational budget
- Differences in data sampling procedure

Re-implementation using publicly available code Bayesian Optimisation with same computational budget

Exact same training pipeline

Results – Office31

Experimental setup

- Pairwise transfer among three domains
- A subset of data is sampled for each run
- Five runs are performed

Domain	Amazon (\mathcal{A})	DSLR (\mathcal{D})	Webcam (\mathcal{W})
Source samples/class	20	8	8
Target samples/class	3	3	3
Classes	31	31	31

 TABLE I: Office31 dataset statistics for experiment

	$\mathcal{A} \to \mathcal{D}$	$\mathcal{A} ightarrow \mathcal{W}$	$\mathcal{D} ightarrow \mathcal{A}$	$\mathcal{D} ightarrow \mathcal{W}$	$\mathcal{W} ightarrow \mathcal{A}$	$\mathcal{W} \to \mathcal{D}$	Avg.
FT-Source	66.6 ± 3.0	59.8 ± 2.1	42.8 ± 5.2	92.3 ± 2.8	44.0 ± 0.7	98.5 ± 1.2	67.4
FT-Target	71.4 ± 2.0	74.0 ± 4.9	56.2 ± 3.6	95.9 ± 1.2	50.2 ± 2.6	99.1 ± 0.8	74.5
CCSA	84.8 ± 2.1	87.5 ± 1.5	66.5 ± 1.9	97.2 ± 0.7	64.0 ± 1.6	98.6 ± 0.4	83.1
d-SNE	86.5 ± 2.5	88.7 ± 1.9	65.9 ± 1.1	97.6 ± 0.7	63.9 ± 1.2	99.0 ± 0.5	83.6
DAGE-LDA	85.9 ± 2.8	87.8 ± 2.3	66.2 ± 1.4	97.9 ± 0.6	64.2 ± 1.2	99.5 ± 0.5	83.6

TABLE II: Macro average classification accuracy (%) for Office-31 using a VGG16 network pretrained on ImageNet. The reported results are the mean and standard deviation across five runs.

Results – MNIST \rightarrow USPS

Experimental setup

- Source data: MNIST with 2000 samples / class
- Target data: USPS with varying samples / class
- A subset of data is sampled for each run
- Ten runs are performed

Samples/class	1	3	5	7
CCSA d-SNE DAGE-LDA	$\begin{array}{c} {\bf 75.6 \pm 2.1} \\ {\bf 69.0 \pm 1.7} \\ {\bf 67.0 \pm 1.9} \end{array}$	$egin{array}{r} {\bf 85.0 \pm 1.4} \\ {80.4 \pm 1.7} \\ {82.7 \pm 1.7} \end{array}$	$\begin{array}{c} 87.8 \pm 0.7 \\ 86.1 \pm 0.9 \\ \textbf{89.0} \pm \textbf{0.8} \end{array}$	$\begin{array}{c} 89.1 \pm 0.7 \\ 87.7 \pm 0.9 \\ \textbf{90.7} \pm \textbf{0.5} \end{array}$

TABLE III: Classification accuracy (%) for MNIST \rightarrow USPS with a varying number of target samples per class.

In conclusion

- Re-evaluation of prior state-of-the methods in a fair comparison
- Novel use of Graph Embedding: trace-ratio objective as loss in deep NN
- A simple LDA-inspired Domain Adaptation loss, DAGE-LDA matches or beats the overall accuracy or prior state-of-the-art methods

Thank You for Your attention

