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Motivation 5)
FZI

m State of the art object detectors: CNN
designs

m They usually generate multiple detections 4
per object

m Non-Maximum Suppression removes
duplicates
B Heuristic based on loU
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Motivation ﬁ
FZI

m But assumptions of classical NMS do not
always hold in crowded scenes 4

= Idea: Rely on (visual) features in these
cases!
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Classical NMS 5)
FZI

m Classical NMS compares loU against threshold N

= |oU <N =No duplicate
= |oU > N =-Duplicate
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FeatureNMS ﬁ
FZI

m FeatureNMS uses two loU thresholds Ny and N,

= |oU <N; =No duplicate
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FeatureNMS ﬁ
FZI
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FeatureNMS ﬁ
FZI

FeatureNMS uses two loU thresholds Ny and N,

loU <N; =-No duplicate

loU > Ny =-Duplicate

Ny < loU <N, =-Use similarity metric
® Embedding distance >T =-No duplicate
® Embedding distance < T =-Duplicate
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Feature Embedding &
FZI

® Add network head to detection CNN
= Predict embedding vector per detection

® Trained using Margin Loss

® Same object: Distance below 8 — «
m Different objects: Distance above 8 + «
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Evaluation ﬁ
FZI

®m CrowdHuman dataset
m Train RetinaNet detector on training set, run on test set

m Post-process raw outputs with different NMS algorithms
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Conclusions a
FZI

m FeatureNMS achieves state of the art performance
® |t outperforms other approaches on the CrowdHuman dataset

m Learnt similarity metric is very discriminative
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Thank you for your kind attention!

Feel free to contact me if you have any questions:
salscheider@fzi.de
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