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Motivation

State of the art object detectors: CNN
designs
They usually generate multiple detections
per object
Non-Maximum Suppression removes
duplicates

Heuristic based on IoU
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Motivation

But assumptions of classical NMS do not
always hold in crowded scenes

⇒ Idea: Rely on (visual) features in these
cases!
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Classical NMS

Classical NMS compares IoU against threshold N

IoU ≤N ⇒No duplicate
IoU > N ⇒Duplicate
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FeatureNMS

FeatureNMS uses two IoU thresholds N1 and N2

IoU ≤N1 ⇒No duplicate

IoU > N2 ⇒Duplicate

N1 < IoU ≤N2 ⇒Use similarity metric

Embedding distance ≥T ⇒No duplicate
Embedding distance < T ⇒Duplicate
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Feature Embedding

Add network head to detection CNN
⇒ Predict embedding vector per detection

Trained using Margin Loss
Same object: Distance below β − α
Different objects: Distance above β + α
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Evaluation

CrowdHuman dataset
Train RetinaNet detector on training set, run on test set
Post-process raw outputs with different NMS algorithms
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Results
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FeatureNMS (N1 = 0.1, N2 = 0.9)
FeatureNMS (N1 = 0.0, N2 = 1.0)
FeatureNMS (N1 = −ε, N2 = 1.0)

AdaptiveNMS (with ground truth density)
SoftNMS (Gaussian penalty function, σ = 0.5)

Classical NMS (IoU threshold N = 0.5)
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Conclusions

FeatureNMS achieves state of the art performance
It outperforms other approaches on the CrowdHuman dataset
Learnt similarity metric is very discriminative
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Thank you for your kind attention!

Feel free to contact me if you have any questions:
salscheider@fzi.de

mailto:salscheider@fzi.de

