

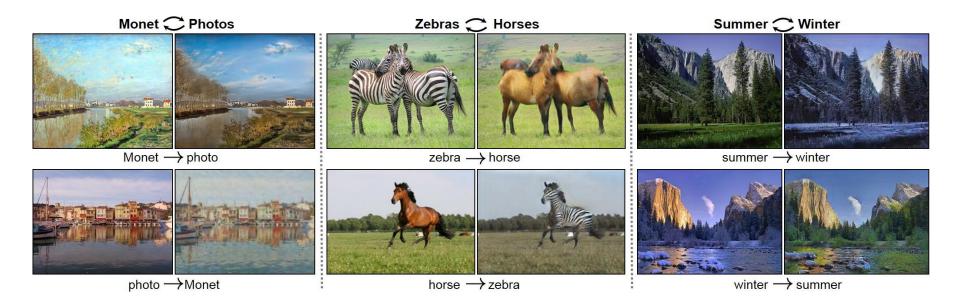
The Surprising Effectiveness of Linear Unsupervised Image-to-Image Translation

Eitan Richardson and Yair Weiss

https://github.com/eitanrich/lin-im2im

Unsupervised Domain Translation (UDT)

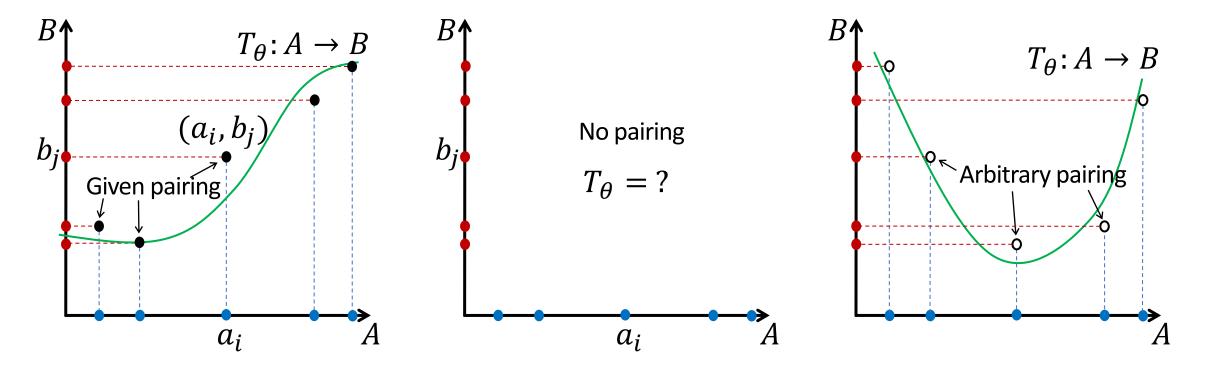
- Input: datasets D_A , D_B sampled from the marginals P(A), P(B) of some joint distribution P(A, B)
- Task: Learn P(B|A)



Unsupervised im2im domain pairs used in CycleGAN [1]

UDT is ill-posed !

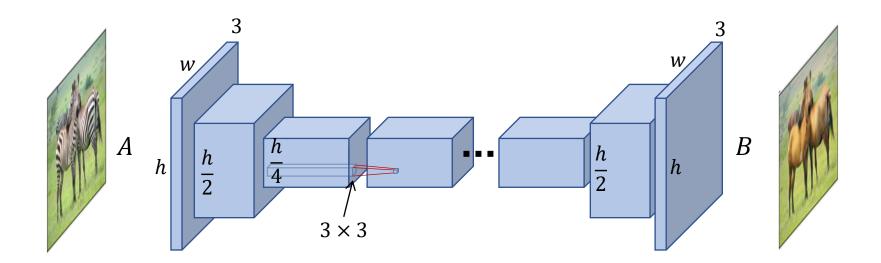
• Toy example: $A, B \subset \mathbb{R}$. Without matching pairs, any arbitrary pairing defines a valid transformation:



So how does CycleGAN, MUNIT [2], ... work?

Locality bias: problem + architecture

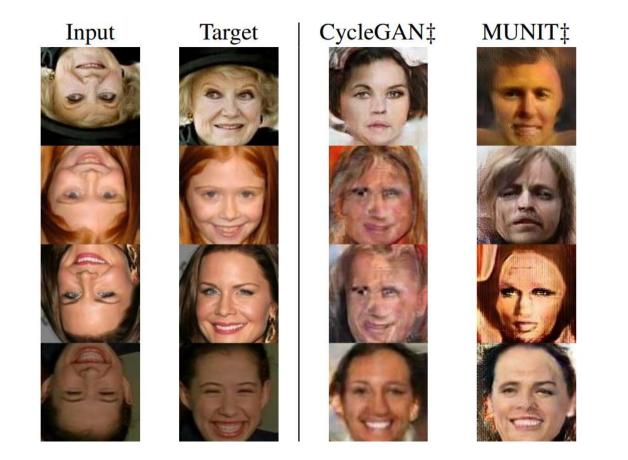
CycleGAN, ... use an autoencoder bottleneck with a large spatial size and small convolution kernels:



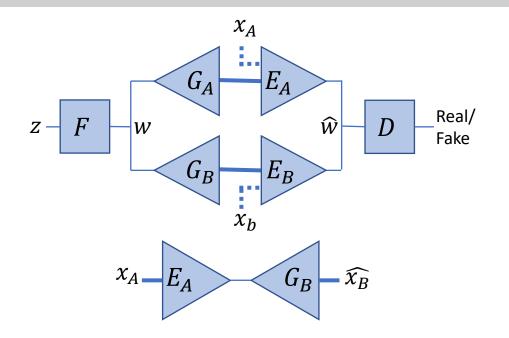
What happens if we remove the bias?

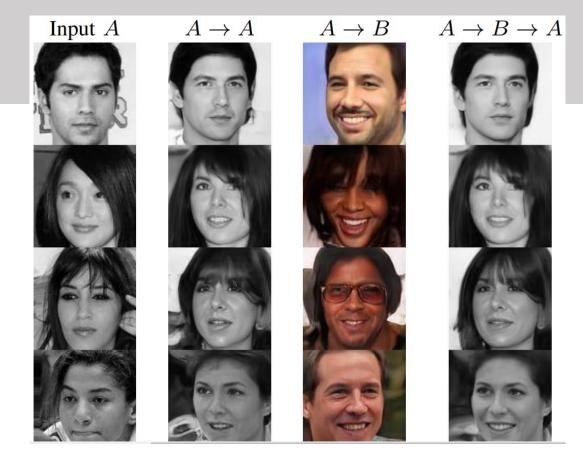
Nonlocal problem

CycleGAN and MUNIT fail to learn a simple nonlocal problem like vertical flip:



Nonlocal <u>architecture</u>



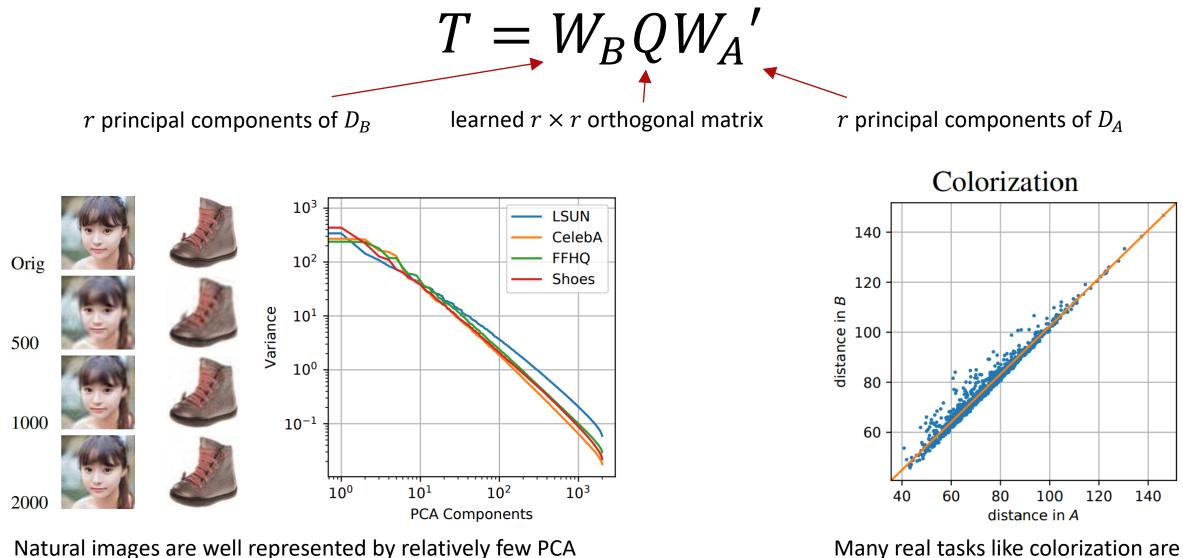


- We construct a UDT model w/o locality bias using StyleGAN / ALAE [3] (top: training configuration, bottom: inference).
- The architecture converges to an <u>arbitrary</u> solution, even for a simple problem like image colorization.

Linear, orthogonal image-to-image translation

- Find $T: A \rightarrow B$ (b = Ta) such that TT' = T'T = I
- Challenges:
 - •*T* is very large
 - •Unsupervised learning scheme?
 - •Expressiveness?

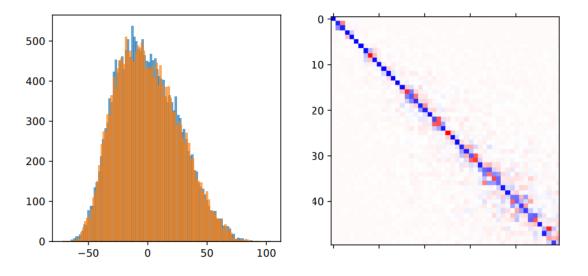
Solution: Learn a linear transformation in PCA space



by relatively few PCA Many real tasks like colorization are close to being distance-preserving.

components ($r \ll d$).

Learning method: Procrustes + ICP_[4,5] in PCA space



PCA ambiguity is resolved via skewness. Target Q is close to identity.

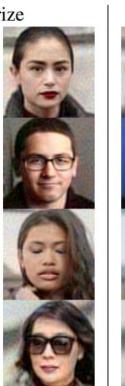
Algorithm 1: Orthogonal UDT in PCA subspace **Input:** $\mathcal{D}_A = \{x_1^A, \dots, x_n^A\}, \ \mathcal{D}_B = \{x_1^B, \dots, x_m^B\}, \ r$ **Result:** Orthogonal transformation $T : A \to B$ 1 Compute W_A, W_B : r principal components of $\mathcal{D}_A, \mathcal{D}_B$ 2 Fix eigenvectors sign for positive skew 3 Compute PCA embedding $\{z_1^A, \ldots z_n^A\}, \{z_1^B, \ldots z_m^B\}$ 4 Initialize $Q \leftarrow I$ 5 while not converged do $A \leftarrow \emptyset, B \leftarrow \emptyset$ 6 for $i \leftarrow 1$ to n do 7 $j \leftarrow \arg\min_{j'} ||z_i^A Q - z_{j'}^B||$ 8 $k \leftarrow \arg\min_{k'} ||z_{k'}^A Q - z_i^B||$ 9 if k = i then 10 A.insert-row (z_i^A) , B.insert-row (z_j^B) 11 $U, S, V \leftarrow \text{SVD}(A^T B)$ 12 $Q \leftarrow UV$ 13 14 return $T \leftarrow W_A^T Q W_B$

[4] Besl et al, Method for registration of 3-d shapes, 1992[5] Hoshen and Wolf, Non-adversarial unsupervised word translation, 2018

Results

Task	CycleGAN‡			MUNIT‡			Ours‡			Ours†		
	MSE	SSIM	T[h]	MSE	SSIM	T[h]	MSE	SSIM	T[h]	MSE	SSIM	T[h]
CelebA-colorize	0.0066	0.914	49	0.0256	0.750	52	0.0043	0.883	0.04	0.0071	0.761	0.04
CelebA-vflip	0.1167	0.358	43	0.1084	0.333	48	0.0012	0.917	0.04	0.0041	0.780	0.04
FFHQ-rot90	0.1267	0.302	39	0.1220	0.268	39	0.0023	0.870	0.05	0.0335	0.381	0.05

Rotate



Super-resolution $\times 8$

Inpaint

Conclusion

- UDT is in general ill-posed.
- SOTA unsupervised im2im methods rely on locality bias.
- Our approach linear orthogonal transformations can be learned in a few seconds and works well for many true relations.