Context matters: Self attention for Sign Language Recognition

Fares Ben Slimane

Mohamed Bouguessa

Goal : Sign Language recognition System

- Recognize continuous SL gestures.
- Capture SL gesture information from space and time.

Input : Only RGB data

Literature on Sign Language Recognition

- Glove-based methods.
- Motion tracking gadgets and sensors.

<u>"jsc2012e237333"</u> by <u>NASA Johnson</u> is licensed under <u>CC</u> BY-NC 2.0

Sign Language Gestures = Hand articulations + non-manual components

Multiple channels of information

Non-manual components provide <u>semantic</u> <u>context</u> to the dominant hand.

Man

Woman

VS

Sit

Chair

- "Is it you?"
- "Are you ... ?"
- "Did you?"

VS

- It's you?!?! (I am surprised that it is you.) Sign Language Gestures = Dominant Handshape +

Contextual Information

Temporal Information Spatial (Hand and Body movements) Information (Around the handshape)

Key insight

"

Signs require recognizing the handshape accompanied by its <u>contextual information</u>.

CONTEXT MATTERS !!

Typical architecture for Sign Language Recognition

SIGN ATTENTION NETWORK (SAN)

Sign Clip

Key insight:

 Signs are recognizable from the state of the body, apart from the handshape

Solution:

- Exploit spatiotemporal context around the handshape to recognize the sign

SIGN ATTENTION NETWORK With Hand Stream

Sign Clip

SubUNets: End-to-end Hand Shape and Continuous Sign Language Recognition

Sign language components have complex relations.

Attention Efficiently capture dependencies between manual and nonmanual components.

SIGN ATTENTION NETWORK With Relative local Context masking

Implementation Details

- Extract T keyframes (mostly 64) from original video clip.
- Resize full-frame and hand frames to 224 x 224 and 112 x 112.
- Normalize input images by subtracting the dataset's image pixels mean.
- We use the MobilenetV2 CNN architecture for feature extraction.

Word Error Rate (WER)

$WER = \frac{\# \text{deletions} + \# \text{insertions} + \# \text{substitutions}}{\# \text{number of reference observations}}$

Comparison SAN variations

	Dev	Test
SAN	35.33	35.45
+ Hand Stream	33.68	34.12
+ Relative Local Masking	32.74	33.29

Pretraining methods

Pre-Training	Dev	Test
ImageNet	32.74	33.29
RWTH-PHOENIX-Weather 2014	29.02	29.78

Model is too complex to generalize using our dataset.

Better initialization scheme for our model by firstly training the spatial feature extractor (CNN) on the same dataset.

Quantitative Evaluation on the RWTH-PHOENIX-WEATHER 2014 DATASET in WER %

	Dev	Test
SAN	29	29.7
Koller et al. (CNN-2BLSTM) [7]	32.7	32.9
Koller et al. (CNN) [7]	33.7	33.3
Huang et al. [9]	-	38.3
Cui et al. [17]	39.4	38.7
Koller et al. [6]	38.3	38.8
Camgoz et al. (HMM-LM) [10]	40.8	40.7
Camgoz et al. (CTC) [10]	43.1	42.1
Koller et al. [35]	47.1	45.1
Koller et al. [27]	57.3	55.6

O. Koller, J. Forster, and H. Ney. <u>Continuous sign language recognition: Towards large vocabulary</u> <u>statistical recognition systems handling multiple signers</u>. <u>Computer Vision and Image Understanding</u>, volume 141, pages 108-125, December 2015.

Qualitative Analysis

Thank you !!!

References:

- Memes created by : Meme Generator Imgflip
- <u>SIGN Regonition Dataset: https://www-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX/</u>

Papers:

- Video Action Transformer Network
- Neural Sign Language Translation
- <u>SubUNets: End-to-end Hand Shape and</u> <u>Continuous Sign Language Recognition</u>

Code (GitHub):

The official PyTorch implementation of "Context Matters: Self-Attention for sign Language Recognition"

- https://github.com/faresbs/slrt

