

Hierarchical Routing Mixture of Experts

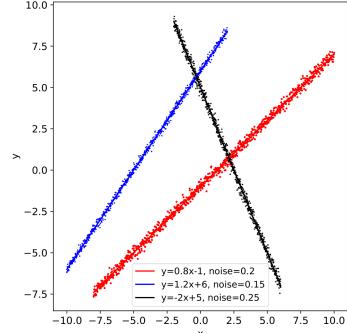
Wenbo Zhao, Yang Gao, Shahan Ali Memon, Bhiksha Raj, Rita Singh Carnegie Mellon University

- Motivation & Background
- Hierarchical Routing Mixture of Experts
 - Model
 - Learning Algorithm
- Experiments
- Conclusion

- Motivation & Background
- Hierarchical Routing Mixture of Experts
 - Model
 - Learning Algorithm
- Experiments
- Conclusion

Complex data distributions are challenging for regression tasks

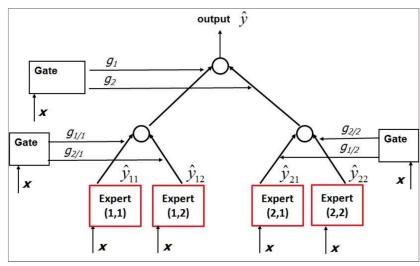
- Complex data distributions
 - E.g., multimodal data
 - Single regression model has high bias



Example: intersecting lines with different noises

Regression on complex distributions by divide-and-conquer

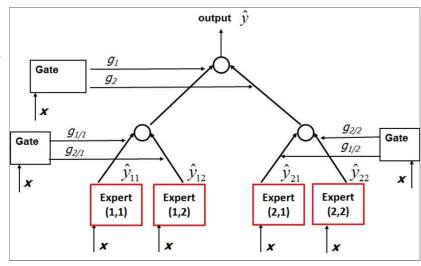
- Conventional divide-and-conquer methods
 - Partition input space
 - Hard-partition: decision trees, random forests
 - Soft-partition: mixture of experts
 - Probabilistic tree-structured models
 - Nodes: gates to partition inputs
 - Leaves: experts to local regression
 - E.g., HME, HME-GP, HME-SVM



Hierarchical mixture of experts [1]

Conventional divide-and-conquer methods have shortcomings

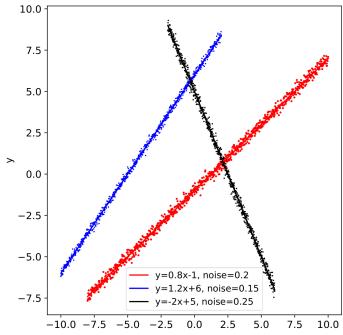
- Shortcomings of conventional methods
 - Hard-partition: decision trees, random forests
 - 1) Discontinuities
 - 2) High biases
 - Soft-partition: mixture of experts
 - 1) Do not leverage input-output dependency; gate/partition based on assumed distributions
 - 2) Need strong experts
 - 3) Need additional procedures to optimize tree structures



Hierarchical mixture of experts [1]

We address conventional methods' shortcomings by joint-partition and optimization 10.0

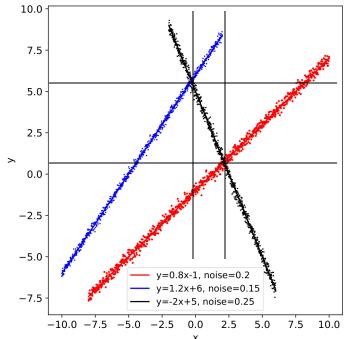
- Joint partition input-output space
 - E.g., different sub-output spaces (y) have different modes (x)
 - Joint partition (x, y) such that each sub-region has a simple mode to enable simple expert
- Joint optimization tree structure and experts



Example: intersecting lines with different noises

We address conventional methods' shortcomings by joint-partition and optimization

- Joint partition input-output space
 - E.g., different sub-output spaces (y) have different modes (x)
 - Joint partition (x, y) such that each sub-region has a simple mode to enable simple expert
- Joint optimization tree structure and experts
 - No need for additional structure optimization

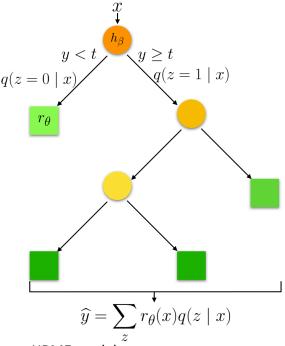


Example: intersecting lines with different noises

- Motivation & Background
- Hierarchical Routing Mixture of Experts
 - Model
 - Learning Algorithm
- Experiments
- Conclusion

Hierarchical routing mixture of experts (HRME) has classifier nodes and regressor leaves

- Binary tree
 - Node: binary classifier
 - Classify by separateness of modes
 - Soft-partition by probabilistic class assignment
 - Hierarchical partition input-output space
 - Resulting sub-region has simple mode, ideally unimodal
 - Leaf: simple regressor
 - Each sub-region has a regressor



HRME model

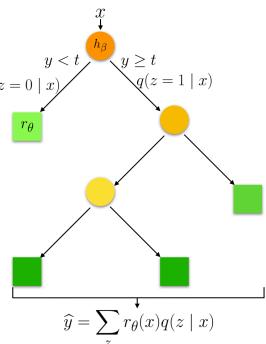
Hierarchical routing mixture of experts (HRME) makes probabilistic inference

- Probabilistic inference for data $(x, y), x \in \mathbb{R}^d, y \in \mathbb{R}$
 - Introduce a threshold t, y = 0 if y < t otherwise y = 1
 - Each node n_i carries a classifier $h_{eta^*_{n_i}}: oldsymbol{x} \mapsto \{n_{i+1}, n_{i+2}\}$
 - Introduce a binary-valued random variable z_{n_i} 1: assign to n_i , 0: not assign
 - Likelihood of assign a data $m{x}$ to node n_i $q(\mathbf{z}_{n_i} \mid m{x}) \equiv q(\mathbf{z}_{n_i} = 1 \mid m{x}) \longleftarrow h_{\beta_{n_{i-1}}^*}(m{x})$
 - Likelihood of assign a data x to leaf l_k

$$q(\mathsf{z}_{l_k} \mid oldsymbol{x}) = \prod_{j=1}^{\kappa-1} q(\mathsf{z}_{l_{j+1}} \mid \mathsf{z}_{l_j}, oldsymbol{x})$$

• Estimate by expectation of leaf predictions $r_{\theta_{l_k}^*}(\boldsymbol{x})$

$$\hat{y} = \sum_{l_k \in \text{leaves}} r_{ heta_{l_k}^*}(oldsymbol{x}) q(oldsymbol{\mathsf{z}}_{l_k} \mid oldsymbol{x}) \hspace{0.5cm} p(y \mid oldsymbol{\mathsf{z}}_{l_k}, oldsymbol{x}) \leftarrow r_{ heta_{l_k}^*}(oldsymbol{x})$$



HRME model

Recursive EM jointly optimizes experts and tree structure

- Recursive Expectation-Maximization algorithm
 - Objective $\max \log p(y \mid \boldsymbol{x}) = \sum_{\mathbf{z}} q(\mathbf{z} \mid \boldsymbol{x}) \log \frac{p(y, \mathbf{z} \mid \boldsymbol{x})}{q(\mathbf{z} \mid \boldsymbol{x})} + \sum_{\mathbf{z}} q(\mathbf{z} \mid \boldsymbol{x}) \log \frac{q(\mathbf{z} \mid \boldsymbol{x})}{p(\mathbf{z} \mid y, \boldsymbol{x})},$
 - E-step: compute evidence lower bound (ELBO)

$$Q(p,q) = \sum_{\boldsymbol{x}} \sum_{\mathbf{z}} q(\mathbf{z} \mid \boldsymbol{x}) \log \frac{p(y,\mathbf{z} \mid \boldsymbol{x})}{q(\mathbf{z} \mid \boldsymbol{x})}$$
$$= \sum_{\boldsymbol{x}} \sum_{\mathbf{z}} q(\mathbf{z} \mid \boldsymbol{x}) \log \frac{p(y \mid \mathbf{z}, \boldsymbol{x})p(\mathbf{z} \mid \boldsymbol{x})}{q(\mathbf{z} \mid \boldsymbol{x})}.$$

- M-step: optimize partition thresholds and model parameters
- Done recursively, depth first (Details are in the paper)

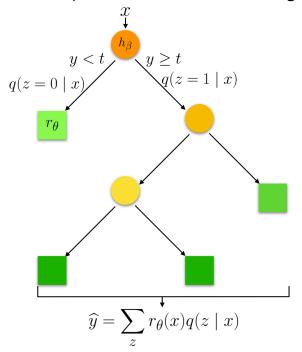


HRME model

Recursive EM jointly optimizes experts and tree

structure

Recursive Expectation-Maximization algorithm



```
Algorithm 1: Recursive EM Learning of HRME
Input: [data], [root]
Parameter: \{t\}, classifier parameters, regressor
                  parameters
Output: HRME Tree
Function GrowTree (data_list, nodes_per_level)
     for node in nodes_per_level do
          \mathbb{D} \leftarrow data\ list
          node_l, node_r \leftarrow GrowSubtree(node)
          for t do
               \begin{array}{l} \mathbb{D}_{l},\,\mathbb{D}_{r}\leftarrow \text{SplitData}\left(\mathbb{D},\,t\right)\\ \textbf{if}\,\,\frac{\min\left(\left|\mathbb{D}_{l}\right|,\left|\mathbb{D}_{r}\right|\right)}{\#\,\,of\,\,total\,\,samples} < min\_leaf\_sample\_ratio \end{array}
                 then continue:
                node.TrainClassifier(\mathbb{D}, t)
                Propagate conditionals using Equation (3)
                node\_l.TrainLeaf(\mathbb{D}_l)
                node r.TrainLeaf(\mathbb{D}_r)
                Q \leftarrow \text{ComputeQ} using Equation (10)
          end
          if Q > Q^* then
                Q^* \leftarrow Q
                data list \leftarrow [\mathbb{D}_l, \mathbb{D}_r]
                nodes\_per\_level \leftarrow [node\_l, node\_r]
                GrowTree (data_list, nodes_per_level)
          else
                Delete the subtree
               continue
          end
     end
```


- Motivation & Background
- Hierarchical Routing Mixture of Experts
 - Model
 - Learning Algorithm
- Experiments
- Conclusion

Data

TABLE I: Dataset Statistics

DATASET	FEATURE DIM	TRAIN	TEST	
3-LINES	1	1750	750	
Housing	13	354	152	
CONCRETE	8	721	309	
CCPP	4	6697	2871	
ENERGY	28	14803	4932	
Kin40k	8	10000	30000	

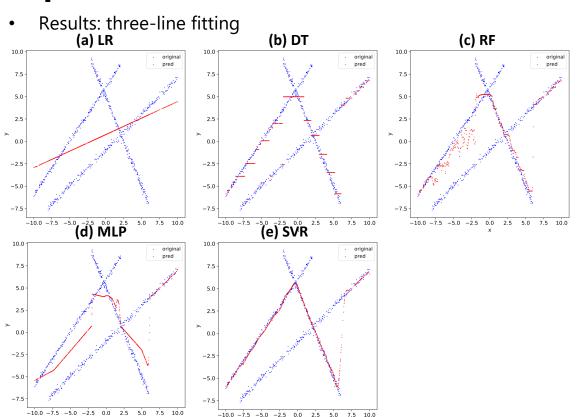
Models

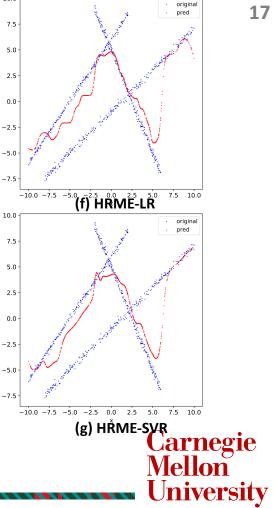
- HRME
 - Leaf: linear regression (HRME-LR)
 - Leaf: support vector regression (HRME-SVR)
- Baselines
 - Linear regression (LR)
 - Support vector regression (SVR)
 - Decision trees (DT)
 - Random forests (RF)
 - Hierarchical mixture of experts (HME)
 - Multilayer neural nets (MLP) Carnegie

Results

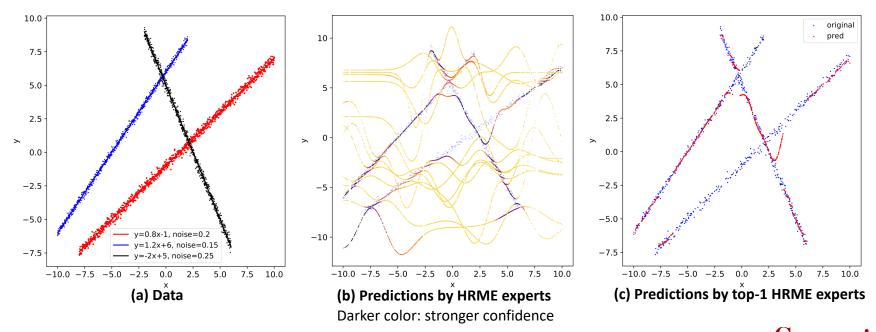
TABLE II: Experiment Results

DATASET	METRIC	LR	LR SVR	DT	RF	НМЕ	MLP	HRME	
								LR	SVR
3-LINES	MAE	3.352	2.006	2.224	2.131	_	1.960	2.337	2.250
	RMSE	4.104	3.173	3.291	3.072	_	2.795	2.885	2.859
Housing	MAE	3.651	3.498	2.537	2.103	4.170^{1}	6.711	2.682	3.266
	RMSE	4.911	5.126	3.665	3.043	5.610^{2}	8.535	3.857	4.376
Concrete	MAE	8.088	8.013	4.919	3.436		5.394	4.121	4.020
	RMSE	10.204	10.772	8.000	4.806	6.250^{3}	6.594	5.664	5.609
ССРР	MAE	3.601	2.746	2.941	2.383		4.013	2.965	2.712
	RMSE	4.578	3.856	4.151	3.409	4.100^{4}	5.078	3.951	3.805
ENERGY	MAE	52.075	43.141	43.996	52.002	_	40.521	42.121	40.009
	RMSE	93.564	101.267	99.654	95.558	_	88.191	89.203	87.022
Kin40k	MAE	0.806	0.092	0.592	0.433		0.237	0.150	0.071
	RMSE	0.996	0.161	0.773	0.548	0.230^{5}	0.312	0.212	0.114

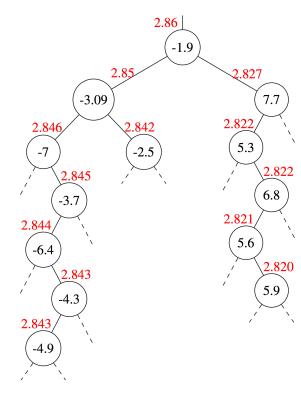




Results: three-line fitting by experts in HRME



Results: HRME tree on three-line data



HRME tree

Node: partition threshold Edge: regression error

- Motivation & Background
- Hierarchical Routing Mixture of Experts
 - Model
 - Learning Algorithm
- Experiments
- Conclusion

Conclusion

- Hierarchical routing mixture of experts (HRME) addresses the difficulty of data partitioning and expert assigning in conventional regression models
- HRME captures natural data hierarchy and routes data to simple regressors for effective predictions
- Probabilistic framework + recursive Expectation-Maximization (EM) algorithm to optimize both tree structure and expert models
- Comprehensive experiments validate effectiveness
- HRME properties
 - Convergence: $\mathcal{O}(k^{-2/d})$ in the L_p norm
 - Complexity: $\mathcal{O}(n^3 \epsilon^d + dn^2 \epsilon^{d/2})$
 - Consistency: yes
 - Identifiability: yes

References

[1] Yuksel, S. E., Wilson, J. N., & Gader, P. D. (2012). Twenty years of mixture of experts. *IEEE Transactions on Neural Networks and Learning Systems*, 23(8), 1177-1193.

[2] Zhao, W., Gao, Y., Memon, S. A., Raj, B., & Singh, R. (2020). Hierarchical routing mixture of experts. *ICPR 2020*.

