

Video Reconstruction by Spatio-temporal Fusion of Blurred-Coded Image Pair

Anupama S¹, Prasan Shedligeri², Abhishek Pal³, Kaushik Mitra²

¹Qualcomm India, Bangalore, India ²Department of EE, IIT Madras, Chennai, India ³Mad Street Den, Chennai, India

Video extraction from a single blurred image

Motion ambiguity in the reconstructed video

Video from blurred image [Jin et al., Purohit et al.]

Video extraction from a coded exposure image

Light inefficient due to exposure sequence

Video from coded exposure [Raskar et al., Reddy et al., Holloway et al., Liu et al., Yoshida et al., Gupta et al.]

Complementary information from blurred-coded pair

	Motion information	Light efficiency		
Blurred Image	Ambiguous	100% light captured		
Coded Image	Unambiguous	~50% light captured		

<u>Objective</u>: Extract motion information from coded image and use the light efficiency of the blurred image</u>

Coded-blurred image acquistion

Coded-blurred video reconstruction

Video Reconstruction by Spatio-temporal Fusion of Blurred-Coded Image Pair

Video Reconstruction from Coded-Blurred Image Pair

Extracting low-resolution videos from coded image

Full-resolution video from single coded image is ill-posed.

So, we make a local homogenous intensity assumption on the predicted video to solve for only low-resolution video sequence

Spatio-temporal volume of NxNxT to be reconstructed

Extracting low-resolution video from blurred image

Rearranging the pixels of an image into a video

Attention Block: Spatio-temporal fusion of blurred-coded pair

Comparison of blurred vs. coded vs. coded-blurred video reconstruction

Exposure code used to obtain the coded images

We use a sequential impulse code of size 3x3x9 to generate our coded exposure images. The 3x3 code depicted here is repeated to cover the full size of each sharp sub-frame. 1 represents exposed pixel and 0 represents unexposed pixel.

Pixel-wise multiply and average along time

		- 10 P.				
	1			1		0
	0	0	0	0	0	0
	0	0	0	0	0	0
_	1	0	0	1	0	0
-	0	0	0	0	0	0
	0	0	0	0	0	0

Repeated exposure code

Coded exposure image

Ground truth frames

Ground truth video

Blurred image as input

Coded image as input

Input Images

Zoomed-in blurred image Jin *et al.*

PSNR: 26.23 dB SSIM: 0.939

Purohit et al.

PSNR: 30.51 dB SSIM: 0.967

GMM [Yang et al.]

PSNR: 33.20 dB SSIM: 0.973

PSNR: 34.25 dB SSIM: 0.980

Coded-blurred pair as input GMM [Yang et al.]

PSNR: 35.22 dB SSIM: 0.981

Ours

PSNR: 36.16 dB SSIM: 0.986

Quantitative comparison

Input	Blurred Image			Coded Image		Coded + blurred	
Algorithm	Jin et al.	Purohit et al.	Ours	GMM [Yang et al.]	Ours	GMM [Yang et al.]	Ours
PSNR	22.89	23.48	23.86	30.27	32.52	32.39	34.09
SSIM	0.865	0.879	0.861	0.938	0.962	0.955	0.971

Attention maps learned for coded-blurred fusion

Visualizing Learned Attention Maps

Blurred Image

Predicted Video

Predicted Attention Map

Visualizing Learned Attention Maps

Blurred Image

Predicted Video

Predicted Attention Map

Summary

A framework for video recovery from coded-blurred image pairs

Exploiting complementary information from coded-blurred pairs for better video recovery

Attention map module for attending to the complementary information.

Better reconstruction performance than either coded image or blurred image alone