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Goal on Field Saved Field
…

Pass Tackle Pass Goal … Pass Pass Miss Save

Goal on Field
…

Out Pass Goal …

Goal on Penalty

GoalFoul

Corner

Match 1

Match 2

Video Actions
Video annotations made by

human operators from
broadcasted videos

Events

Video Actions - Events
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Our Approach
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Proposal
Parts (consecutive relevant events) of the match that might belong to the 
summary

Inspired by:
• Object Detection: Region Proposal Network, Faster RCNN, ..
• Action Detection: SST, R-C3D, …

Proposals Generation
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Pass Pass Tackle Pass Goal Pass Out Pass Aerial Corner Pass Tackle Pass… …

Summary

Similarity of inter-categorical actions

Very similar sets of events belong to different classes

Pass Pass Tackle Pass OutPass …Out … Pass PassInterception

Proposals Generation
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Pass Tackle Pass Goal Pass Out Pass Aerial Corner Pass Tackle Pass… …

Pass Pass Tackle Pass OutPass …Out … Pass PassInterception

MIL: Multiple Instance Learning

Proposals Generation
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𝑤ℎ𝑒𝑟𝑒 𝑌 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑏𝑒𝑙 𝑜𝑓 𝑎 𝑏𝑎𝑔 𝑎𝑛𝑑

𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑏𝑒𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒

Negative: All the instances inside the bag are negative

Positive: If there is at least on instance inside the bag which is positive



• Traditional MIL paradigm assumes neither ordering nor dependency of 
instances within a bag

• However, the selection of an action to be part of a summary is highly 
dependent on the sequence of its events

LSTM MIL Pooling
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𝑏1 = 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5
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𝑂𝑏1

𝑥1
𝑀 𝑥2

𝑀 𝑥3
𝑀 𝑥4

𝑀 𝑥5
𝑀

LSTM MIL Pooling

14



SST: Buch, S., Escorcia, V., Shen, C., Ghanem, B., & Carlos Niebles, J. (2017). Sst: Single-stream temporal action proposals. In Proceedings of the IEEE 
conference on Computer Vision and Pattern Recognition (pp. 2911-2920).
MI-Net: Wang, X., Yan, Y., Tang, P., Bai, X., & Liu, W. (2018). Revisiting multiple instance neural networks. Pattern Recognition, 74, 15-24.
MI-Net Attention: Ilse, M., Tomczak, J. M., & Welling, M. (2018). Attention-based deep multiple instance learning. arXiv preprint arXiv:1802.04712.

LSTM MIL Pooling

Comparison with State of the Art
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Summarization:

Hierarchical Multimodal Attention
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Hierarchical Multimodal Attention
First Stage
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First Stage
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Learn the importance of each modality at the event level
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𝐴ℎ𝑖

𝐴

Hierarchical Multimodal Attention
First Stage
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Learn the importance of each event inside the action
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𝑐ℎ1

𝑐 + 𝛽2
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Hierarchical Multimodal Attention
Second Stage
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Hierarchical Multimodal Attention
Comparison with the State of the Art

Naive
Hori et al. Ours
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Hierarchical Multimodal Attention
Comparison with the State of the Art
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Hierarchical Multimodal Attention
Comparison with Soccer Baselines
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Thank you!

Hierarchical Multimodal Attention for Deep Video 
Summarization

Melissa SANABRIA
sanabria@unice.fr
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