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B Scale variation is one of the key challenges in object detection.
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Fig. 1. Statistical analysis of annotated bounding boxes (bboxes) in COCO.
CDF is the abbreviation of cumulative distribution function.

Not only the scale variation but also the aspect ratio variation should be taken into account.
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Examples of objects assignment

A feature pyramids are widely used to improve scale invariance by mapping the objects to feature
maps with relevant square receptive fields.

The regions in the red and green rectangles are the receptive fields of feature layers
at different resolutions respectively, when mapping the objects in the blue rectangle.

The poor match between objects and assigned features is bound to ,,

occur among a rectangular and a square receptive filed.
s MNy=esotul 1L
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FPN [1] only forms a single top-down pathway to propagate high-level information. It
will make the integrated features focus more on adjacent resolution but less on others.
Each feature in the pyramid may mainly or only contain single-level information, thus
limiting the detection performance.

[1] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object
detection,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117-2125, 2017. , ’
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Motivations

4 4
The designed feature pyramids Each feature in the pyramid is
should match objects with multiple required to be representative
scales and aspect ratios. Specifically, enough and contain rich information.
objects should be assigned to Specifically, the feature fusion
feature layers with fitted receptive methods should combine low-level
filed. and high-level information effectively.

b b

/Y\imiLSﬂujﬁ i




02

Proposed
methods




pm i ———————— e - 1 1 [TTTTTTTTT T T T T TS )

1 | I Classification I

| : I — HxWxC I

| ! | Q M Q 3 |

! TDM BUM I -'/{ ol | gomeass e SEI'I . Q Gaussizn centar-ness :

r} EWxl15 TxW=2 '

o N : ¢ /f/ T U : HxWxl1 I

s I

: .x"'/-/ o’ I _ :_-h- Fegression |

| E:J [] " HxWzs |

- I :l HxWxl5d HxW=zl34 |

Base I-::nurcs I ﬁ pﬁ:’ a g 1 |

DM ___ _! BE . .. e e o _ /
Backbone BMFPN Feature Pyramids Model Predictions

This is the overall pipeline of our model based on FCOS[1]. DLGM utilizes multi-level
features extracted by backbone to generate the base features. Then the base features are
fed into TDM and BUM in series to construct feature pyramids for final model predictions.

[1] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-stage object detection,” Proceedings
of the IEEE International Conference on Computer Vision, pp. 9627-9636, 2019 ,’
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—— deconv 3x3 stride: 1x2

—— deconv 3x3 stride: 2x1

Deconvolution and convolution with asymmetric strides in h and w dimensions
to construct the final feature pyramids.
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— conv 3x3 stride 1x2 dilation 1x2

— conv 3x3 stride 2x1 dilation 2x1

Width Downsampling

BUM

Height Downsampling
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The scale and aspect ratio of receptive field are proportional
between each feature layer in theory.

we set both the width (WR) and height ranges(HR) of object
instances assigned to each feature layer.

For example:
Leooy: WR: (16,32) HR:(16, 32)
Leoay: WR:(16,32) HR:(32, 64)
Li1oy: WR: (32, 64) HR:(16,32)

if a location satisfies :
max(l*,r*) € WRL(ij),max(b*,t*) € HRL(ij)

it will be assigned to layer L(; j.
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The target is decided by the hyper-parameter o, central
location (xg, yo) and box size (h, w) .
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Experiments

TABLE 1
THE PERFORMANCE FROM THE BASELINE GRADUALLY TO ALL
COMPONENTS INCORPORATED ON MS COCO vAL-2017 SPLIT.

GCB DLGM TDM BUM | AP APy, AP, APg AP, AP;
367 558 392 210 407 484

v 370 559 395 213 409 486
v 332 499 354 145 361 478

v v 376 567 403 210 415 496

v v | 365 530 393 169 406 522

v v v | 397 577 428 224 444 530

v v V. v | 400 577 431 228 445 534

With all these components added to FCOS, improvement on AP is 3.3% over
baseline. And the results shows that large size instances contribute most (+5.0%).
Moreover, it makes more accurate detection with 3.9% improvement on AP;s. ,’
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@) Ablation Studies

TABLE III TABLE 1V
COMPARISON BETWEEN DIFFERENT FEATURE PYRAMID STRUCTURES COMPARISON BETWEEN DIFFERENT CONNECTION MODE ON MS COCO
BASED ON FCOS. vAL-2017 spLI1T. TDM+BUM | PARALLEL MODE; BUM—TDM : BUM
FIRST UNDER SERIES MODE; TDM—BUM : TDM FIRST UNDER SERIES
Method AP  AP:, AP-s APs APy AP; Params (M) MODE.
Baseline(FPN) [17] | 36.7  55.8 39.2 210 407 434 32.02
PAFPN [21] 370  56.1 39.4 20.8 40.8 48.4 34.38
xNets [27] 379 560 407 211 430 509 33.20 Mode AP APso  APrs  APs APy APL
BMFPN* 380 563 405 212 417 513 34.97 TDM+BUM | 38.9 57.5 41.6 22.2 432 51.8
BMFPN 397 577 428 224 444 53.0 34.97 BUM—TDM | 39.2 57.6 42.1 22.0 435 51.9
TDM—BUM | 39.7 57.7 42.8 224 44.4 53.0

TABLE V
COMPARISON WITH DIFFERENT CONNECTION LAYERS BETWEEN TDM
AND BUM oN MS COCO vAL-2017 spLIT. MODE NO DENOTES TDM
AND BUM ARE DIRECTLY CONNECTED WITHOUT ANY OTHER
CONNECTION LAYER.

Mode AP APsy APy APg APy APp

NO 394 57.7 421 223 43.6 53.3
Convolution 304 57.6 422 21.5 442 52.9
Dilated convolution | 39.7 57.7 42.8 224 44.1 53.0
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Experiments

TABLE VI
COMPARISON WITH STATE-OF-THE-ART DETECTORS ON MS COCO TEST-DEV SPLIT.

Method Backbone | AP  APs5 AP APs APy APy,
Two-stage detectors

Faster R-CNN w/FPN [17] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2
Mask R-CNN [33] ResNeXt-101 39.8 62.3 43.4 22.1 43.2 51.2
Cascade R-CNN [34] ResNet-101 42.8 62.1 46.3 237 45.5 55.2
D-RFCN + SNIP [16] DPN-98 45.7 67.3 51.1 20.3 48.8 57.1
TridentNet [35] ResNet-101-DCN | 46.8 67.6 51.5 28.0 51.2 60.5
One-stage detectors

YOLOv3-608 [36] DarkNet-53 33.0 57.9 344 18.3 354 41.9
SSD513 [7] ResNet-101 31.2 50.4 33.3 10.2 34.5 49 8
RetinaNet800 [8] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2
RefineDet512 [37] ResNet-101 36.4 57.5 39.5 16.6 399 51.4
CornerNet511 [13] Hourglass-104 40.6 56.4 432 19.1 428 54.3
ExtremeNet511 [14] Hourglass-104 40.2 55.5 432 20.4 43.2 53.1
CenterNet511 [12] Hourglass-104 449 624 48.1 25.6 474 57.4
FoveaBox [10] ResNeXt-101 421 619 45.2 249 46.8 55.6
FSAF [11] ResNeXt-101 429 63.8 46.3 26.6 46.2 52.7
FCOS [9] ResNet-101 41.0 60.7 441 24.0 441 51.0
FCOS [9] ResNeXit-101 42.1 62.1 45.2 25.6 44.9 52.0
ours ResNet-101 43.4 62.0 46.5 24.8 46.9 55.1
ours ResNeXit-101 44.7 63.6 48.4 26.1 48.5 57.1

/Y\imiLSﬂujﬁ i




i

11

Fig. 6. Some comparison examples between FCOS (top) and our detector with BMFPN (bottom). Both are using ResNet-50 as backbone. Our BMFPN helps
finding more challenging objects.

TABLE II
DETECTION RESULTS OF SOME CATEGORIES ON MS COCO vAL-2017 SPLIT. THE NUMBERS IN PARENTHESIS STANDS FOR THE RELATIVE AP
IMPROVEMENT.
Method airplane snowboard surfboard fork keyboard toaster SCISSOrS toothbrush  refrigerator  tennis racket
FCOS 61.6 214 26.0 23.1 42.8 21.7 21.3 14.3 49.0 43.2

ours 69.5(+7.9) 32.3(+10.9) 34.7(+8.7) 39.7(+6.6) 50.8(+8.0) 36.4(+14.7) 32.0(+10.7) 22.5(+8.2) 55.1(+6.1) 40.3(+6.1)
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Conclusion

1. A poor match between rectangular objects and feature maps with square receptive
filed.

2. A sparse information flow among each feature in the pyramid.

3. Bidirectional Matrix Feature Pyramid Network (BMFPN) is proposed to address
these issues.

4. An end-to-end anchor-free detector is designed and trained by integrating BMFPN
into FCOS.

5. Extensive experiments demonstrate the effectiveness of the proposed architecture
and the novel modules.
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