Motivation	Proposal	Results	Conclusions
00	000000	0000	

Proximity Isolation Forests

Antonella Mensi¹ Manuele Bicego¹ David M.J. Tax²

¹University of Verona, Italy

²TU Delft, The Netherlands

January 12, 2021

Mensi et al. Proximity Isolation Forests

Motivation	Proposal	Results	Conclusions
●0	000000	0000	

Motivation

- Isolation Forests: successful Random-Forest based methodology for outlier detection (Liu, 2008).
- Isolation Forests + extensions vectorial data only.
- Many outlier detection tasks that work with non-vectorial data:
 - Sequences, e.g. finding abnormal sequences in an ECG (Lourenço, 2013)
 - Images, e.g. detecting small masses in a brain image (El, 2016)
 - Graphs e.g. detecting traffic-related anomalies (Shekhar, 2001)

< 口 > < 同 >

There is no RF-based methodology to solve these tasks!

Motivation ⊙●	Proposal 000000	Results 0000	Conclusions 00
Proposal			
There exist sever	al measures for measur	ing the distance betwe	en
	sequences, images,	etc.	
We can emp	loy pairwise distances t	o work directly with	
	non-vectorial dat	a.	

Our proposal: Proximity Isolation Forests (PIF) methodology for outlier detection. It works with trees that are built using only *pairwise distances* between the objects.

Motivation	Proposal	Results	Conclusions
00	●00000	0000	

Proximity Isolation Tree

■ Proximity Isolation Tree (PIT): built recursively using a matrix D containing all pairwise distances d(·, ·) between the objects in dataset S.

• (*Testing*) How does an object x traverse a PIT? Two ways.

- **1** For each internal node *n* we have one prototype *P* and a threshold θ . If $d(x, P) \le \theta$ then $x \longrightarrow n_L$ otherwise $x \longrightarrow n_R$.
- 2 For each internal node *n* we have two prototypes P_L and P_R . If $d(x, P_L) \le d(x, P_R)$ then $x \longrightarrow n_L$ otherwise $x \longrightarrow n_R$.

where L and R stands for left and right.

< ロ > < 回 > < 回 > < 回 > < 回 >

Motivation	Proposal	Results	Conclusions
	00000		

(Training) When building a PIT, we have to find the best split in each internal node Five ways: *two* random and *three* optimized.

- I R-1P: Select randomly one prototype P among the objects in n. Then pick randomly a threshold θ in the range [min d(x, P), max d(x, P)].
- R-2P: Choose randomly a pair of objects as prototypes P_L and P_R among the objects in n.

Univ Verona

Mensi et al

Motivation	Proposal	Results	Conclusions
	00000	0000	

Proximity Isolation Forests

Motivation	Proposal	Results	Conclusions
	000000		

No features no variance.

Necessary to define a measure that captures the sparseness of the distance values scatter.

1 ScatterD

$$S_D(D) = \frac{1}{N^2} \sum_{i=1}^N \sum_{j=1}^N d(i,j)$$

2 ScatterP

$$S_P(\mathsf{D}, P) = \frac{1}{N} \sum_{i=1}^N d(i, P)$$

< ∃⇒

Univ Verona

where N is the number of objects in D and P is a prototype.

00 00000 0000 00	Motivation	Proposal	Results	Conclusions
		000000		

Optimized criteria:

- **3** O-1PS_D Choose the pair (P, θ) which optimizes *ScatterD* where P is an object in n and $\theta \in \{d(x, P) | x \in n\}$.
- **4 O-2PS**_D: Choose the pair (P_L, P_R) which optimizes *ScatterD* where P_L and P_R are objects in n.
- **5 O-2PS**_{*P*}: Choose the pair (P_L, P_R) which optimizes *ScatterP* where P_L and P_R are objects in *n*.

Image: A math a math

Univ Verona

Mensi et al

Motivation	Proposal	Results	Conclusions
	00000		

Proximity Isolation Forests

Univ. Verona

< D > < B >

Mensi et al. Proximity Isolation Forests

Motivation	Proposal	Results	Conclusions
		0000	

Datasets¹

Dataset	Nr. Obj.	% of Outl.	Dist. Type
DelftPedestrians	689	3.92%	Cloud Dist.
DelftGestures	1500	5%	Dynamic Time Warping
WoodyPlants	791	7.96%	Shape Dist.
Pendigits	10992	9.60%	Weighted Edit Dist.
Zongker	2000	10%	Deformable Template Dist.
ChickenPieces (V1)	446	13.68%	Weighted Edit 2D Shape Dist.
Protein	213	14.08%	Evolutionary Dist.
Flowcyto (V1)	612	54.74%	Histogram Dist.

¹Source: http://prtools.tudelft.nl/Guide/37Pages/distools.html

Mensi et al.

Proximity Isolation Forests

Motivation	Proposal	Results	Conclusions
00	000000	0●00	

Experimental Setup

- Number of split variants: 5 options, R-1P, R-2P, O-1PS_D, O-2PS_D, and O-2PS_P.
- Number of trees in a forest *T*: 50, 100, 200, 500.
- Number of training samples used to build a forest *N*: 64, 128, 256, 512.
- Maximum depth per tree *D*: N 1, $D = \log_2(N)$.
- Each experiment repeated 10 times.
- AUC as accuracy measure.

Image: A math a math

Motivation	Proposal	Results	Conclusions
00	000000	00●0	

Experimental Observations

- There is a best option for each parameter.
- Each dataset has a preferred variant. The preferred variant seems to vary based on the outlier percentage of the dataset.
 From lowest to highest: R-1P, O-2PS_P, O-2PS_D and R-2P.

Complete and detailed results can be found in the paper.

Motivation	Proposal	Results	Conclusions
		0000	

Comparison with classical density and distance-based methodologies

Dataset	NNd	KNNd	LOF	LOF-Range	K-Cent.	PIF
DelftPedestrians	0.524	0.567	0.553	0.579	0.629	0.799 (0.799)
DelftGestures	0.419	0.440	0.547	0.579	0.643	0.955 (0.976)
WoodyPlants	0.451	0.390	0.659	0.639	0.714	0.910 (0.930)
Pendigits	0.505	0.490	0.492	0.466	0.600	0.745 (0.755)
Zongker	0.566	0.476	0.564	0.514	0.752	0.796 (0.811)
ChickenPieces	0.462	0.462	0.456	0.444	NaN	0.825 (0.846)
Protein	0.413	0.820	0.922	0.919	0.861	0.984 (0.985)
Flowcyto	0.498	0.448	0.619	0.623	0.629	0.708 (0.737)
Average	0.479	0.524	0.602	0.596	0.688	0.840 (0.855)

• Chosen PIF parametrization: T = 200, $D = log_2(N)$, N = 256, Variant= $O - 2PS_D$.²

²In italics we report the *best* result per dataset. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle$

Univ. Verona

Mensi et al.

Proximity Isolation Forests

Motivation	Proposal	Results	Conclusions
00	000000	0000	●○

Conclusions

- PIF: RF-based methodology for outlier detection that works with non-vectorial data.
- PIF only needs a pairwise distance matrix as input.
- Five different criteria (random and optimized) to choose the best split in a node.
- Good results on 8 datasets, also when compared to classical techniques.

Results

A B +
A B +
A
B
A
B
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Thank you for your attention!

Mensi et al. Proximity Isolation Forests