
OMADA: On-manifold Adversarial 

Data Augmentation Improves 

Uncertainty Calibration

Kanil Patel1,2, William Beluch1, Dan Zhang1, Michael Pfeiffer1, Bin Yang2

1Bosch Center For Artificial Intelligence
2University of Stuttgart, Institute of Signal Processing and System Theory



Bosch Center for Artificial Intelligence

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
17

 Deep learning predictions tend to be over-confident and mis-calibrated

 Improve DNN prediction confidences

o Ultimate goal: Higher confidences for correct predictions and lower confidences for incorrect 

predictions

 Confidences should match up with the difficulty in predicting the samples

o For a set of samples assigned p% confidence: accuracy should match the p%

Motivation



Data Creation Process
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Unknown ground truth data distribution: 𝑃∗ 𝑋, 𝑌

Sample dataset 𝒟 = {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁

Empirical distribution is formed by assembling delta functions located on each example

Replace the delta function by some estimate of the density in the vicinity (e.g. data 
augmentation)

Target labels are hard (i.e. 𝒚 𝜖 {𝒚 ∶ 𝒚 𝜖 0,1 𝑐 , 1𝑇𝒚 = 1})

Labels are sampled from 𝑃𝒟 𝑦 𝑥) = argmax ො𝑦 𝑃∗ ො𝑦 𝑥) 𝑃∗ 𝑋, 𝑌

Image Source: Bright Side



Cross-Entropy Loss with Hard Labels Can Encourage Over-
Confidence

Bosch Center for Artificial Intelligence | 2019-04-12

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

One-hot vector forces network to be over confident

Penalizes network for showing any level of uncertainty

Possible Solution:

Class Predictions Max Confidence

𝑋 ~ 𝑃∗ 𝑋 (ambiguous samples)

𝑌 ~ 𝑃∗ 𝑌 𝑋) (soft label capturing uncertainty)



On-Manifold Data Augmentation

 Approx. Manifold: Encoder-Decoder Generative Model

 Semi-Supervised Training

 Interested in boundary regions constrained on manifold

 Inefficient to randomly sample these boundary regions on manifold

(Unsupervised) Manifold (Semi-supervised) Manifold Predictions Map on Manifold

𝑋 ~ 𝑃∗ 𝑋 (ambiguous samples)

𝑌 ~ 𝑃∗ 𝑌 𝑋) (label capturing uncertainty)



On-Manifold Data Augmentation

 Approx. Manifold: Encoder-Decoder Generative Model

 Semi-Supervised Training

 Interested in boundary regions constrained on manifold

 Inefficient to randomly sample these boundary regions on manifold

(Unsupervised) Manifold (Semi-supervised) Manifold Confidence Map on Manifold

𝑋 ~ 𝑃∗ 𝑋 (ambiguous samples)

𝑌 ~ 𝑃∗ 𝑌 𝑋) (label capturing uncertainty)



On-Manifold Adversarial Attacks
𝑋 ~ 𝑃∗ 𝑋 (ambiguous samples)

𝑌 ~ 𝑃∗ 𝑌 𝑋) (label capturing uncertainty)



OMADA – On Manifold Adversarial Data Augmentation



Experimental Setup

 Datasets: CIFAR-10, CIFAR-100 and SVHN

 Models: DenseNet (L=100, k=12), WRN-28-10, VGG-16, ResNext-29

 Compare against multiple related methods

 Evaluation Metrics:

o Accuracy

o Calibration Error (ACE)

o Sparsification

o Outlier detection performance (AUC)

o Outlier MMC (Mean Max. Confidence)



Calibration Error and Accuracy

CIFAR-10

CIFAR-100



Sparsification Error and Outlier Detection



Conclusion

 Introduced concept of on-manifold adversarial data augmentation for uncertainty estimation

 Leverage recent advances in generative modeling

 Latent space classifier to approximate decision boundaries

 Adversarial attack on latent space for sampling ambiguous samples

 Show improvements on accuracy and calibration performance
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