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 Deep learning predictions tend to be over-confident and mis-calibrated

 Improve DNN prediction confidences

o Ultimate goal: Higher confidences for correct predictions and lower confidences for incorrect 

predictions

 Confidences should match up with the difficulty in predicting the samples

o For a set of samples assigned p% confidence: accuracy should match the p%

Motivation



Data Creation Process
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Unknown ground truth data distribution: 𝑃∗ 𝑋, 𝑌

Sample dataset 𝒟 = {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁

Empirical distribution is formed by assembling delta functions located on each example

Replace the delta function by some estimate of the density in the vicinity (e.g. data 
augmentation)

Target labels are hard (i.e. 𝒚 𝜖 {𝒚 ∶ 𝒚 𝜖 0,1 𝑐 , 1𝑇𝒚 = 1})

Labels are sampled from 𝑃𝒟 𝑦 𝑥) = argmax ො𝑦 𝑃∗ ො𝑦 𝑥) 𝑃∗ 𝑋, 𝑌

Image Source: Bright Side



Cross-Entropy Loss with Hard Labels Can Encourage Over-
Confidence
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One-hot vector forces network to be over confident

Penalizes network for showing any level of uncertainty

Possible Solution:

Class Predictions Max Confidence

𝑋 ~ 𝑃∗ 𝑋 (ambiguous samples)

𝑌 ~ 𝑃∗ 𝑌 𝑋) (soft label capturing uncertainty)



On-Manifold Data Augmentation

 Approx. Manifold: Encoder-Decoder Generative Model

 Semi-Supervised Training

 Interested in boundary regions constrained on manifold

 Inefficient to randomly sample these boundary regions on manifold

(Unsupervised) Manifold (Semi-supervised) Manifold Predictions Map on Manifold

𝑋 ~ 𝑃∗ 𝑋 (ambiguous samples)

𝑌 ~ 𝑃∗ 𝑌 𝑋) (label capturing uncertainty)



On-Manifold Data Augmentation

 Approx. Manifold: Encoder-Decoder Generative Model

 Semi-Supervised Training

 Interested in boundary regions constrained on manifold

 Inefficient to randomly sample these boundary regions on manifold

(Unsupervised) Manifold (Semi-supervised) Manifold Confidence Map on Manifold

𝑋 ~ 𝑃∗ 𝑋 (ambiguous samples)

𝑌 ~ 𝑃∗ 𝑌 𝑋) (label capturing uncertainty)



On-Manifold Adversarial Attacks
𝑋 ~ 𝑃∗ 𝑋 (ambiguous samples)

𝑌 ~ 𝑃∗ 𝑌 𝑋) (label capturing uncertainty)



OMADA – On Manifold Adversarial Data Augmentation



Experimental Setup

 Datasets: CIFAR-10, CIFAR-100 and SVHN

 Models: DenseNet (L=100, k=12), WRN-28-10, VGG-16, ResNext-29

 Compare against multiple related methods

 Evaluation Metrics:

o Accuracy

o Calibration Error (ACE)

o Sparsification

o Outlier detection performance (AUC)

o Outlier MMC (Mean Max. Confidence)



Calibration Error and Accuracy

CIFAR-10

CIFAR-100



Sparsification Error and Outlier Detection



Conclusion

 Introduced concept of on-manifold adversarial data augmentation for uncertainty estimation

 Leverage recent advances in generative modeling

 Latent space classifier to approximate decision boundaries

 Adversarial attack on latent space for sampling ambiguous samples

 Show improvements on accuracy and calibration performance
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