Rank-based ordinal classification

Joan Serrat, Idoia Ruiz

Computer Vision Center and Compt. Science Dept. Universitat Autònoma de Barcelona, Spain

ICPR 2020

- Nominal (mainstream) classification : categories are considered independent, unrelated
- Ordinal classification : categories follow a certain relative order
- Applications
 - Assessment of aesthetic quality of an image: very bad < flawed < ordinary < professional < exceptional
 - Age prediction from face images: $0-2 < 3-6 < \ldots < +60$ years, or one class per year
 - Stage of a progressive illness in medical imaging: *mild nonproliferative retinopathy < moderate < severe < proliferative*
 - Building damage assessment from satellite images: no damage < moderate < severe < destruction
 - Monocular depth estimation: 0-1.5 < 1.5-5 < 5-10 < +10 meters
 - . . .

We claim not all ordinal classification problems are the same:

- Categories are the result of the quantization of a continuous measure (distance, years) \rightarrow Minimize difference between groundtruth and predicted *labels*
- ② Distance among categories is unknown → Difference between numeric class labels is arbitrary and probably suboptimal as a loss
- How much worse is predicting a building is *destroyed* when the groundtruth is *severe damage*?
- What's the distance between a *professional* photo and a *flawed* one?

- Predict a ranking or order of all the ordinal classes, from most to least probable
- Propose a new ordinal classification loss that does not need to define a distance between classes because it compares grountruth vs predicted rankings
- Enforce both the accuracy and consistency of prediction: the order of the classes corresponds to some unimodal distribution, which mode is the groundtruth class.

Groundtruth class: 3

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Predicted ranking [3,4,2,5,1,6] consistent

[3,4,5,6,2,1] consistent

З

[3,6,2,4,5,1] not consistent

Goals:

- Convert the logits/scores output of the network into ranks of classes (first most, second most, ..., least probable)
- 2 Define a loss that measures a distance between two rank vectors

Difficulties:

- Ranking, like sorting, is a non differentiable operation
- Metrics to compare rankings (Spearman cross-correlation, Kendall's tau-beta) are not differentiable

Method : from logits to rank probabilities

Let C = 4 be the number of classes and \bar{s}_i , $i \in [1, 4]$ their scores, approximated as the mean of a Gaussian distribution $p(s_i) = \mathcal{N}(s_i | \bar{s}_i, \sigma^2)$ for $\sigma = 0.2$

 $P = [p_j(r)], j, r \in [1, C]$ probability for each score to have each possible rank

Same after 50 iterations of Sinkhorn transform (See algorithm details in our paper)

[1] M. Taylor, J. Guiver, S. Robertson, and T. Minka. Softrank: Optimising non-smooth rank metrics, in First ACM Int. Conf. on Web Search and Data Mining (WSDM), 2008.

Method : rank-based losses for ordinal classification

In classification, the groundtruth is the label of the true class $l \in [1, C]$, where C is the number of classes.

There are several possible valid groundtruth rankings V(l) within S_C , the group of permutations of $1 \dots C$

$$V(l) = \{ c \in S_C \mid c_1 = l, \\ l \leq c_i < c_j \text{ if } i < j \text{ and} \\ c_i < c_j \leq l \text{ if } i > j, \forall i \neq j \}$$

For instance, if $l = 3, C = 4, V(l) = \{[3, 4, 2, 1], [3, 2, 4, 1], [3, 2, 1, 4]\}$ corresponding to the ranks of unimodal 4-tuples of scores with maximum at the third position.

We have designed 3 losses to compare groundtruth and predicted rankings.

Method : rank-based losses for ordinal classification

One-configuration loss $L_{oc}(P,l)$. The only valid ranking for the true label l is $c_l = [l, l+1, l-1, l+2, l-2...],$ $L_{oc}(P,l) = \sum_{r=1}^{C} \text{NLL}([p_j(r)]_{j=1...C}, \text{OneHot}(c_l[r]))$

All configurations loss $L_{ac}(P, l)$. The groundtruth ranking follows the rank distributions P we have obtained.

$$L_{\mathsf{ac}}(P,l) = \min_{v \in V(l)} L_{\mathsf{oc}}(P,v)$$

Valid pairs loss $L_{vp}(P, l)$. Let $(i, j, a, b) \in [1, C]^4$ be 4-tuples where i, j are indices in a vector of ranks and a, b classes.

$$L_{\mathsf{vp}}(P,l) = -\sum_{\substack{i < j \le l, a > b\\l \le i < j, a < b}} \log p_i(a) p_j(b)$$

	EMD	SORD	CNN-POR	One config	All configs.
Accuracy	62.2 [†] —	59.6 \pm 3.6 †		55.3 ± 4.4	55.2 ± 3.7
	53.0 ± 5.3 *	48.8 \pm 6.9 *		59.1 ± 5.2	59.0 ± 3.7
MAE	—	0.49 ± 0.05	0.55 ± 0.08 †	0.57 ± 0.05	0.56 ± 0.05
	0.76 ± 0.09	* 1.31 \pm 0.21 *		0.49 ± 0.06	0.49 ± 0.05

† as reported in these papers, single run of the experiment.

— not reported or implemented.

Odd rows VGG16, even rows ResNet18.

Results: MSRA-MM

very relevant 35.5%

irrelevant

22.5%

Samples for the query "Beach"

relevant

42%

Query	CNN	-POR	One config.		All configs.		Valid pairs	
	Acc.	MAE	Acc.	MAE	Acc.	MAE	Acc.	MAE
Baby	50.00	0.636	51.26	0.590	51.51	0.592	51.35	0.578
Cat	52.89	0.598	54.07	0.534	54.82	0.536	54.09	0.530
Beach	51.11	0.596	55.30	0.496	54.85	0.503	55.27	0.489
Fish	66.33	0.355	67.48	0.337	66.63	0.337	68.80	0.324

LeNet and mean of 3 runs like in CNN-POR

Results: Schiffanella's ImageAesthetics

unacceptable 0.3% flawed 4.3% ordinary 72.4%

professional 22.0% exceptional 1.0%

Category	EMD		SORD		Valid pairs	
	Acc. MA	E Acc.	MAE	Acc.	MAE	
Nature	71.96* 0.34	2* 73.5	9 [†] 0.271 [†]	74.77	0.261	
	72.06* 0.31	.7* 71.0	4* 0.381*	74.95	0.260	
Animals	66.98* 0.40)8* 70.2	9† 0.308†		0.318	
	67.17* 0.40		6* 0.555*	70.07	0.310	
Urban	70.89* 0.34	2* 73.2	5† 0.276 †	72.98	0.281	
	70.64* 0.30)3* 67.7	5* 0.498*		0.276	
People	67.97* 0.42	29* 70.5	9 [†] 0.309 [†]	70.73	0.309	
	67.04* 0.42	21* 65.5	0* 0.571*	70.79	0.307	

Top rows VGG16, bottom rows ResNet18. * as computed by our implementation. † as reported in papers. CNN-POR not included because SORD is better in all categories.

Results: AVA

New task analogous to mean score regression : predict the the most voted score.

		SOTA	One config.
Mean score prediction	$ ho_s$	0.64	0.58
Most voted score prediction	Acc. %		63.15
	MAE		0.41

Results: Building damage assessment

- New method for ordinal classification that does not depend on the difference/distance between class labels
- Three loss functions that compare groundtruth and predicted rankings, also enforcing consistency in the prediction
- We compare our method with SOTA on three different datasets, achieving similar or better results in all of them
- We tackle a new task on image aesthetics assessment, namely, the prediction of the most voted class
- We present results on a last application, building damage assessment from remote sensing images