

About Us

Kaan Yilmaz

kaan.yilmaz@volvocars.com
Chalmers University of Technology
Master program: Complex Adaptive Systems

Baris Suslu

baris.suslu@volvocars.com
Chalmers University of Technology
Master program: System, Control and Mechatronics

Sohini Roychowdhury

Volvo Cars Technology USA, Mountain View

L. Srikar Muppirisetty

<u>srikar.muppirisetty@volvocars.com</u> Volvo Car Corporation, SE-405 31 Göteborg, Sweden

What is SLAM?

- Create a map of the environment using sensors
- Localize the vehicle within the map

Inertial Measurement Unit (IMU)

Stereo Camera / RGB-D Camera

Lidar

Challenges about SLAM

IMU initialization

If **IMU** is being used, then:

- Robust IMU initialization for autonomous vehicle scenarios is essential.
- Available methods have been tested only on UAV scenarios.

>>> A gravity direction initialization method is proposed

Sensor-failure

- The accuracy of sensors can degrade due to hardware wear.
- Sensors may stop working completely because of environmental conditions.

>>> Multiple localization algorithms are proposed to form a single SLAM which have fail-safe modes

MAIN PURPOSE: Developing a <u>fail-safe</u> SLAM algorithm with accurate <u>gravity direction initialization</u>

Proposed SLAM (AV-SLAM)

- Based on Mono-Camera, LIDAR and IMU
- Has 3 sensor setup modes (fail-safe):
 - IMU-Only Localization
 - Camera+LIDAR (RGBD-SLAM)
 - IMU+Camera+LIDAR (VI-SLAM)
- VI-SLAM features a gravity direction initialization algorithm (AGI)

Figure 1: Overall architecture of AV-SLAM

IMU-Only Localization

Pseudo-Measurement Concept

Extended Kalman Filter consists of two steps;

- Prediction step
- Update step

In order to proceed the **update step**, **measurement** is needed.

It is assumed that while a car is travelling, its **lateral** and **upward** velocities are 'zero'.

$$\boldsymbol{z} = \left[^{\mathrm{IMU}} \mathbf{v}_t^{lat}; {}^{\mathrm{IMU}} \mathbf{v}_t^{up}\right] = 0$$

Figure 2: Roll, pitch and yaw directions

RGBD-SLAM

- Graph-SLAM that involves
 Mono-Camera + LIDAR.
- Scales of visual keypoints are estimated from LIDAR-interpolated depth image
- Create new 3D map points with unmatched ORB features
- Manage keyframes

Figure 3: High-level architecture of RGBD-SLAM

Visual-Inertial SLAM (VI-SLAM)

- Involves fusing RGBD-SLAM with IMU measurements
- Features a gravity direction initialization method

Figure 4: High-level architecture of VI-SLAM

VI-SLAM: Fusing Visual and Inertial Pose Estimations

- Visual and IMU pose estimation are loosely coupled
- Equally weighting between Visual and IMU estimations

Figure 5: Coupling mechanism of VI-SLAM

VI-SLAM: Proposed Gravity Direction Initialization (AGI)

- Calculate roll and pitch angles using the estimated gravitational accelerations at each timestep.
- The moving average of roll and pitch angles are calculated.

Gravity direction — Converged values of roll and pitch angles

Dataset 09: Estimated Gravity Direction

Figure 8: Convergence plot of gravity direction initialization

Results: Translational RPE Comparison

Table 1: Percentage Translational RPE of proposed and state-of-the-art SLAM algorithms on KITTI sequences

Seq No	$\% \text{ RPE}_{\text{trans}}$						
	IMU-Only (Proposed)	RGBD- SLAM (Proposed)	VI-SLAM (Proposed)	LOAM	ORB- SLAM2	Cube- SLAM	PL-SLAM
00	362	1.62	2.03	0.78	0.7	1.97	2.38
01	14.0	31.1	32.1	1.43	1.39		3.23
02	91.5	1.25	1.19	0.92	0.76	2.48	2.2
04	2.23	0.9	1.16	0.71	0.55	1.12	1.57
05	24.2	1.53	1.31	0.57	0.37	1.64	1.67
06	6.65	1.69	1.36	0.65	0.43	2.26	2.02
07	3.95	2.01	1.21	0.63	0.45	1.63	1.57
08	22.7	1.78	1.3	1.12	1.06	2.05	2.42
09	11.1	1.05	0.65	0.77	0.83	1.66	1.49
10	11.9	1.04	0.75	0.79	0.55	1.46	1.61

Results: Gravity Direction Initialization

- Abs. error <1 degree in datasets 02, 07, 08, 09 and 10
- Low std deviation across multiple runs
- Sampling: 10Hz
- Compared with VINS-Mono's method and a baseline method (Roll and pitch are initialized to 0 deg)

Table 2: Absolute error of gravity direction initialization methods

Roll - Abs Error (deg) Pitch - Abs Error (deg) Seq No AGI (Pro-AGI (Pro-VINS-Baseline VINS-Baseline Mono Mono posed) posed) 0.8 ± 0.03 0.57 ± 0.1 2.38 ± 0.05 00 2.41 1.27 1.06 ± 0.02 01 0.73 1.07 ± 0.95 9.6 ± 0.06 3.01 6.78 ± 0.45 4.44 ± 0.03 02 0.68 ± 0.01 0.19 ± 0.01 0.23 0.34 ± 0.05 0.19 ± 0.08 0.904 2.44 3.22 ± 0.06 0.66 1.3 ± 0.08 05 1.87 3.85 ± 0.01 1.22 0.09 ± 0.02 -06 5.3 ± 0.01 5.42 ± 0.02 0.55 1.38 ± 0.22 0.93 ± 0.01 2.65 07 1.29 $0.38 \pm 0.06 \mid 3.35 \pm 0.2 \mid$ 0.64 0.93 ± 0.06 0.73 ± 0.01 08 $0.49 \pm 0.14 \mid 8.52 \pm 0.3 \mid$ 1.37 $0.52 \pm 0.04 | 1.5 \pm 0.02$ 2.95 09 1.92 1.46 ± 0.05 0.94 ± 0.05 1.76 0.1 ± 0.01 1.83 ± 0.01 10 1.4 0.82 ± 0.03 -3.22 0.33 ± 0.05 -

Table 3: Timesteps required to initialize gravity direction

Seq No	#Timesteps to Initialization				
	AGI (Proposed)	VINS-Mono			
00	169 ± 48	741 ± 2			
01	599 ± 62	170 ± 3			
02	343 ± 2	186 ± 60			
04	243 ± 38	-			
05	279 ± 28	-			
06	202 ± 29	78 ± 8			
07	211 ± 22	125 ± 2			
08	174 ± 23	154 ± 4			
09	325 ± 0	177 ± 1			
10	211 ± 0	_			

Conclusion

We developed:

- A SLAM algorithm comprising of 3 localization algorithms
- Ability to work when IMU fails or when Camera and LIDAR fail
- A gravity direction initialization method and tested it on raw KITTI datasets

- AV-SLAM ensures relative translation error of <2.03% for low to medium speed ego-vehicle scenarios (speed <38km/h) when all sensors are available
- 2. The proposed SLAM framework with AGI method without loop closure modules outperforms state-of-the-art methods with loop closure modules on some datasets.
- 3. The proposed VI-SLAM with AGI algorithm provides fast, accurate and repeatable initialization on some datasets.

QUESTIONS & ANSWERS

