# Region and Relations Based Multi Attention Network for Graph Classification

#### Manasvi Aggarwal, M. N. Murty

Myntra & Indian Institute of Science, Bangalore

manasvia.aggarwal@myntra.com

25th International Conference on Pattern Recognition

Manasvi Aggarwal

Myntra & IISc, Bangalore

# Motivation: Region and Relations Based Multi Attention Network for Graph Classification

- Most of the existing pooling techniques cannot handle long-range dependencies between nodes.
- On the other hand, the node's co-relations with other nodes are also important for more expressive model.
- The existing pooling approaches are either global which cannot preserve the structure or hierarchical which can maintain the structure of the graph.
- Further, standard graph classification approaches use a classifier at the end of hierarchical structure which causes information loss.

We propose a multi-attention network R2MAN which:

- includes our proposed pooling layer R2POOL that forms the new coarser version of the graph based on our proposed region based attention and relation aware attention layers.
- combines R2POOL layer with our attention-aware multi-level prediction mechanism to learn coarse to fine representations and restrict them to use only intermediate features weighted by the alignment scores for classification.
- leverages the proposed branch training strategy to learn importance of each level prediction.
- Experiments show that our model is able to achieve state-of-the-art performance on many real world datasets.

• • = • • = •

# **R2POOL** Layer

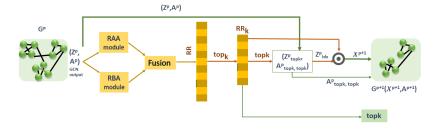



Figure: The R2POOL layer for graph pooling of the R2MAN network.

Manasvi Aggarwal

Myntra & IISc, Bangalore

\* ヨト \* ヨト -

#### R2MAN

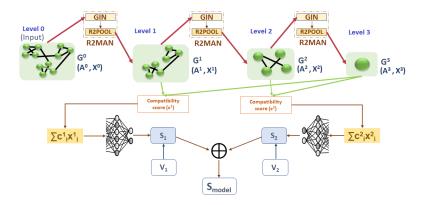



Figure: R2MAN architecture for graph classification

Manasvi Aggarwal

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 Myntra & IISc, Bangalore

### Hierarchical training strategy

Training part of R2MAN consists of majorly 3 steps:

★ 문 ▶ ★ 문 ▶ .

æ

### Hierarchical training strategy

#### Training part of R2MAN consists of majorly 3 steps:

**Compatibility scores**  $(C^p)$  between each pth intermediate layer node representations  $(X^p)$  and vector of final level graph  $(O^P)$ .

$$e_{i}^{p} = x_{i}^{p}O^{p}, \ c_{i}^{p} = rac{exp(e_{i}^{p})}{\sum\limits_{j=1}^{N_{p}}exp(e_{j}^{p})}, \ \forall i \in \{1, 2, \cdots, N_{p}\}$$
  
 $I^{p} = C^{p}X^{p} \ or \ I_{p} = \sum\limits_{i=1}^{N_{p}}c_{i}^{p}x_{i}^{p}, \ \forall p \in \{1, P-1\}$ 

A B M A B M

э

Training part of R2MAN consists of majorly 3 steps:

2 Branch nets at each intermediate layer.

$$S_{p} = Branch_{net}(I_{p}), \quad \forall p \in \{1, P-1\}$$
(1)

Manasvi Aggarwal

Myntra & IISc, Bangalore

(\*) \* 문 \* \* 문 \* · ·

æ

Training part of R2MAN consists of majorly 3 steps:

**3** Finally, **branch training** is used to get the final predictions  $(S_{model})$ .

$$S_{model} = \sum_{p=1}^{P-1} V_p S_p \tag{2}$$

Here,  $v_p$  is the contribution of predictions at layer p.

2

→ < Ξ → </p>

| Algorithms | MUTAG             | PTC                | PROTEINS          | NCI1               | NCI109             | IMDB-B             | IMDB-M             |
|------------|-------------------|--------------------|-------------------|--------------------|--------------------|--------------------|--------------------|
| GK         | 81.39±1.7         | 55.65±0.5          | 71.39±0.3         | 62.49±0.3          | 62.35±0.3          | NA                 | NA                 |
| RW         | 79.17±2.1         | 55.91±0.3          | 59.57±0.1         | NA                 | NA                 | NA                 | NA                 |
| PK         | 76±2.7            | 59.5±2.4           | 73.68±0.7         | 82.54±0.5          | NA                 | NA                 | NA                 |
| WL         | 84.11±1.9         | 57.97±2.5          | 74.68±0.5         | $84.46{\pm}0.5$    | 85.12±0.3          | NA                 | NA                 |
| AWE-DD     | NA                | NA                 | NA                | NA                 | NA                 | 74.45±5.8          | $51.54 \pm 3.6$    |
| AWE-FB     | 87.87±9.7         | NA                 | NA                | NA                 | NA                 | $73.13 \pm 3.2$    | $51.58 {\pm} 4.6$  |
| node2vec   | 72.63±10.20       | 58.85±8.00         | 57.49±3.57        | $54.89 \pm 1.61$   | 52.68±1.56         | NA                 | NA                 |
| sub2vec    | $61.05 \pm 15.79$ | 59.99±6.38         | $53.03 \pm 5.55$  | 52.84±1.47         | 50.67±1.50         | $55.26 \pm 1.54$   | 36.67±0.83         |
| graph2vec  | $83.15 \pm 9.25$  | $60.17 {\pm} 6.86$ | $73.30{\pm}2.05$  | $73.22{\pm}1.81$   | $74.26 {\pm} 1.47$ | $71.1 \pm 0.54$    | $50.44 {\pm} 0.87$ |
| InfoGraph  | 89.01±1.13        | 61.65±1.43         | NA                | NA                 | NA                 | $73.03 {\pm} 0.87$ | 49.69±0.53         |
| SortPool   | 85.83±1.7         | 58.59±2.5          | 75.54±0.9         | 74.44±0.5          | 72.31              | 70.03±0.9          | 47.83±0.9          |
| PSCN       | 88.95±4.4         | 62.29±5.7          | 75±2.5            | 76.34±1.7          | NA                 | 71±2.3             | 45.23±2.8          |
| DCNN       | NA                | NA                 | $61.29 \pm 1.6$   | $56.61 \pm 1.0$    | NA                 | 49.06±1.4          | 33.49±1.4          |
| ECC        | 76.11             | NA                 | NA                | 76.82              | 75.03              | NA                 | NA                 |
| DGK        | 87.44±2.7         | 60.08±2.6          | $75.68 {\pm} 0.5$ | $80.31 {\pm} 0.5$  | 80.32±0.3          | 66.96±0.6          | 44.55±0.5          |
| DIFFPOOL   | 85.56             | 62.8               | 76.25             | NA                 | NA                 | 74.3               | 50.3               |
| SAGPool    | 81.9              | 61.6               | 72.1              | 74.2               | 74.1               | 72.2               | 50.4               |
| gpool      | 80.3              | NA                 | 77.7              | NA                 | NA                 | 73.0               | 49.9               |
| IGN        | $83.89 \pm 12.95$ | $58.53 \pm 6.86$   | $76.58 \pm 5.49$  | $74.33 {\pm} 2.71$ | $72.82{\pm}1.45$   | 72.0±5.54          | 48.73±3.41         |
| GIN        | 89.4±5.6          | 64.6±7.0           | 76.2±2.8          | 82.7±1.7           | NA                 | $75.1 \pm 5.1$     | 52.3±2.8           |
| 1-2-3GNN   | $86.1\pm$         | 60.9±              | $75.5\pm$         | 76.2±              | NA                 | 74.2±              | 49.5±              |
| R2MAN      | 92.11±5.35        | $64.90{\pm}5.99$   | 77.84±1.51        | 79.01±2.53         | 77.80±1.73         | 75.83±3.17         | $51.80 \pm 3.35$   |
| Rank       | 1                 | 1                  | 1                 | 5                  | 3                  | 1                  | 2                  |

Myntra & IISc, Bangalore

### Model Ablation Study

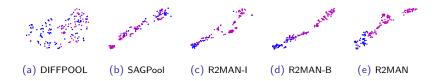



Figure: t-SNE visualization of the graphs from MUTAG dataset. The representations are generated by: (a) DIFFPOOL; (b) SAGPool; (c) R2MAN-I (Using Standard training procedure); (d) R2MAN-B (no branch training) and (e) R2MAN.

# Sensitivity Analysis

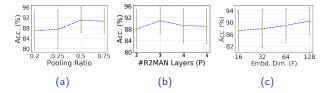



Figure: Sensitivity analysis of R2MAN with respect to various hyper-parameters: (a) Pooling ratio, (b) Number of R2MAN layers and (c) Embedding dimension.

문어 문

# Thank you!! Questions/Suggestions?

Manasvi Aggarwal

Myntra & IISc, Bangalore

Ξ.

프 에 제 프 에 다