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 Input: A monocular video. 
 Output: 3D shape of an object, and full camera trajectory.

Shape and Motion from RGB Video 



Type of Shape Structure

 Rigid: the 3D shape geometry is unknown but remains constant
along time.

 Non-Rigid: the 3D shape geometry is dynamic, i.e., the
configuration can change along time. Many possibilities can be
found:
 Isometric: the global shape is deformable, but some local

constraints can be enforced (distance between joints, etc.).
 Elastic: the shape configuration can change by producing,

bending- and stretching-like deformations.
 Many others.



Rigid vs. Non-Rigid – SfM vs. SLAM 

 Both problems are roughly the same.
 Rigid and non-rigid objects were previously considered in both

frameworks.
 In general, SLAM and rigid SfM formulations exploit a

perspective camera while NRSfM approaches use an
orthographic one.
 Calibration is known a priori and it is normally performed by

using a calibration pattern.

 In this paper, our goal is to recover the camera calibration from
scratch, without assuming training data or calibration patterns.



Our Approach for Self-Calibration 

 Input: Just a monocular video.
 Output: Camera trajectory, self-calibration and the 3D shape

geometry of a wide variety of objects (rigid, elastic, isometric,
etc.). Our solution is sequential, as the data arrives.

 The self-calibration includes the parameters: focal length,
principal point and two distortion parameters.

 Correspondences are computed automatically between
consecutive images.

 No training data nor a calibration pattern are needed.



Motivation 



Qualitative Comparison 

 Full calibration was considered for rigid shapes.
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Qualitative Comparison 

 Full calibration was considered for rigid shapes.
 For non-rigid ones (just isometric deformations), only the focal

length was included and assuming a batch processing.
 Our approach is the only one that jointly retrieves the 3D

reconstruction (from rigid to non-rigid deformations), camera
trajectory, and the full self-calibration in a sequential manner.



Self-Calibration Non-Rigid SoG



Self-Calibration Non-Rigid SoG

 Our approach consists in a Sum-of-Gaussians (SoG) filter to
Gaussianly combine G multivariate distributions as:

 Every Gaussian distribution can come from an Extended
Kalman Filter (EKF), where both mean and covariance are
estimated by a prediction-update strategy.

 The SoG filter combines several EKF solutions (a filter bank),
running in parallel.

 Shape deformations are encoded by a finite-element model.

mean

covariance
weight factor



Non-Rigid SoG Filter



Bank of EKF Filters



Problem Formulation

 The state of the camera is represented by a 18-dimensional
vector, considering both intrinsic and extrinsic parameters:

c includes the calibration, r and q denote the camera position and
orientation, v and are the linear and angular velocities.
 The state of the shape is represented by a 3N-dimensional

vector, considering N 3D points as with

 Given an image , the goal is to estimate the EKF vector



Camera and Surface Motion Models

 The camera state function is represented by:

 The shape state function is represented by:
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0

Constant velocity model

Constant calibration model

FEM model with 
Gaussian forces



Gaussian Update and Pruning

 The contribution of every EKF filter is Gaussianly combined by
means of a weight coefficient, that is updated as:

with the innovation vector.
 The number of Gaussians is reduced by means of sequential

probability ratio test removing those with a low weight factor.
 An overall solution can be considered (only for visualization):



Experimental Evaluation



Experimental Results 

 Two blocks of real experiments:
 Non-Critical motion sequences.

• Rigid. Indoor general scenarios with loop closing.
• Non-Rigid. Rigid, elastic and quasi-isometric 

deformations are included.
 Critical motion sequences.

• Rigid. Shape and/or calibration are ill-posed.  
 In total, seven hand-held camera videos are used.
 An offline calibration in employed to validate our estimation. 



Non-Critical Motion Sequences 

 The rigid case (general indoor conditions):
 Indoor sequence: a RGB camera with smooth motion is 

observing a rigid scene.
 Loop closing sequence: in this case, the camera follows a 

loop trajectory.

Indoor sequence Loop Closing sequence



Non-Critical Motion Sequences 

 The non-rigid case (synthetic and in-vivo materials):
 Silicone cloth sequence: a RGB camera with smooth 

motion is observing a deformable silicone cloth.
 Laparoscopy sequence: an endoscope is observing a 

rabbit abdominal cavity in a medical exploration.



Non-Critical Motion Sequences 

 The non-rigid case (synthetic and in-vivo materials):
 Silicone cloth sequence: a RGB camera with smooth 

motion is observing a deformable silicone cloth.

Mean 3D reconstruction error of 3.96 mm



Non-Critical Motion Sequences 

 The non-rigid case (synthetic and in-vivo materials):
 Laparoscopy sequence: an endoscope is observing a 

rabbit abdominal cavity in a medical exploration.



Critical Motion Sequences 

 Shape and/or calibration is ill-posed:
 Pure rotation sequence: a RGB camera with smooth 

motion is observing a rigid scene.
 Pure translation sequence: in this case, the camera follows 

a loop trajectory.
 Parallel optical axis sequence.



Calibration Results 

 Our approach can sequentially estimate the auto-calibration in a 
wide variety of scenarios together with shape and motion:
 The principal point is better estimated for cycle-torsion 

motions, as it is observed in the Indoor experiment. 
 In general, the two distortion parameter estimations are 

correlated, being difficult to recover everyone of them.
 Competitive solutions with respect to ground truth.  



Calibration Results 

 As expected, for some motions we cannot recover a good 
solution. As no prior is assumed about the type of motion:
 A general estimation is obtained. 
 When the shape and/or motion is incorrect, the calibration 

is anecdotic. The joint solution is bad (see Pure Rotation). 
 Some scenarios allow the estimation of shape and motion, 

but not the calibration (see Parallel Optical Axis).   
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