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 Input: A monocular video. 
 Output: 3D shape of an object, and full camera trajectory.

Shape and Motion from RGB Video 



Type of Shape Structure

 Rigid: the 3D shape geometry is unknown but remains constant
along time.

 Non-Rigid: the 3D shape geometry is dynamic, i.e., the
configuration can change along time. Many possibilities can be
found:
 Isometric: the global shape is deformable, but some local

constraints can be enforced (distance between joints, etc.).
 Elastic: the shape configuration can change by producing,

bending- and stretching-like deformations.
 Many others.



Rigid vs. Non-Rigid – SfM vs. SLAM 

 Both problems are roughly the same.
 Rigid and non-rigid objects were previously considered in both

frameworks.
 In general, SLAM and rigid SfM formulations exploit a

perspective camera while NRSfM approaches use an
orthographic one.
 Calibration is known a priori and it is normally performed by

using a calibration pattern.

 In this paper, our goal is to recover the camera calibration from
scratch, without assuming training data or calibration patterns.



Our Approach for Self-Calibration 

 Input: Just a monocular video.
 Output: Camera trajectory, self-calibration and the 3D shape

geometry of a wide variety of objects (rigid, elastic, isometric,
etc.). Our solution is sequential, as the data arrives.

 The self-calibration includes the parameters: focal length,
principal point and two distortion parameters.

 Correspondences are computed automatically between
consecutive images.

 No training data nor a calibration pattern are needed.



Motivation 



Qualitative Comparison 

 Full calibration was considered for rigid shapes.
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Qualitative Comparison 

 Full calibration was considered for rigid shapes.
 For non-rigid ones (just isometric deformations), only the focal

length was included and assuming a batch processing.
 Our approach is the only one that jointly retrieves the 3D

reconstruction (from rigid to non-rigid deformations), camera
trajectory, and the full self-calibration in a sequential manner.



Self-Calibration Non-Rigid SoG



Self-Calibration Non-Rigid SoG

 Our approach consists in a Sum-of-Gaussians (SoG) filter to
Gaussianly combine G multivariate distributions as:

 Every Gaussian distribution can come from an Extended
Kalman Filter (EKF), where both mean and covariance are
estimated by a prediction-update strategy.

 The SoG filter combines several EKF solutions (a filter bank),
running in parallel.

 Shape deformations are encoded by a finite-element model.

mean

covariance
weight factor



Non-Rigid SoG Filter



Bank of EKF Filters



Problem Formulation

 The state of the camera is represented by a 18-dimensional
vector, considering both intrinsic and extrinsic parameters:

c includes the calibration, r and q denote the camera position and
orientation, v and are the linear and angular velocities.
 The state of the shape is represented by a 3N-dimensional

vector, considering N 3D points as with

 Given an image , the goal is to estimate the EKF vector



Camera and Surface Motion Models

 The camera state function is represented by:

 The shape state function is represented by:

0 0

0

Constant velocity model

Constant calibration model

FEM model with 
Gaussian forces



Gaussian Update and Pruning

 The contribution of every EKF filter is Gaussianly combined by
means of a weight coefficient, that is updated as:

with the innovation vector.
 The number of Gaussians is reduced by means of sequential

probability ratio test removing those with a low weight factor.
 An overall solution can be considered (only for visualization):



Experimental Evaluation



Experimental Results 

 Two blocks of real experiments:
 Non-Critical motion sequences.

• Rigid. Indoor general scenarios with loop closing.
• Non-Rigid. Rigid, elastic and quasi-isometric 

deformations are included.
 Critical motion sequences.

• Rigid. Shape and/or calibration are ill-posed.  
 In total, seven hand-held camera videos are used.
 An offline calibration in employed to validate our estimation. 



Non-Critical Motion Sequences 

 The rigid case (general indoor conditions):
 Indoor sequence: a RGB camera with smooth motion is 

observing a rigid scene.
 Loop closing sequence: in this case, the camera follows a 

loop trajectory.

Indoor sequence Loop Closing sequence



Non-Critical Motion Sequences 

 The non-rigid case (synthetic and in-vivo materials):
 Silicone cloth sequence: a RGB camera with smooth 

motion is observing a deformable silicone cloth.
 Laparoscopy sequence: an endoscope is observing a 

rabbit abdominal cavity in a medical exploration.



Non-Critical Motion Sequences 

 The non-rigid case (synthetic and in-vivo materials):
 Silicone cloth sequence: a RGB camera with smooth 

motion is observing a deformable silicone cloth.

Mean 3D reconstruction error of 3.96 mm



Non-Critical Motion Sequences 

 The non-rigid case (synthetic and in-vivo materials):
 Laparoscopy sequence: an endoscope is observing a 

rabbit abdominal cavity in a medical exploration.



Critical Motion Sequences 

 Shape and/or calibration is ill-posed:
 Pure rotation sequence: a RGB camera with smooth 

motion is observing a rigid scene.
 Pure translation sequence: in this case, the camera follows 

a loop trajectory.
 Parallel optical axis sequence.



Calibration Results 

 Our approach can sequentially estimate the auto-calibration in a 
wide variety of scenarios together with shape and motion:
 The principal point is better estimated for cycle-torsion 

motions, as it is observed in the Indoor experiment. 
 In general, the two distortion parameter estimations are 

correlated, being difficult to recover everyone of them.
 Competitive solutions with respect to ground truth.  



Calibration Results 

 As expected, for some motions we cannot recover a good 
solution. As no prior is assumed about the type of motion:
 A general estimation is obtained. 
 When the shape and/or motion is incorrect, the calibration 

is anecdotic. The joint solution is bad (see Pure Rotation). 
 Some scenarios allow the estimation of shape and motion, 

but not the calibration (see Parallel Optical Axis).   
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