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Shape and Motion from RGB Video

= |nput: A monocular video.
=  Output: 3D shape of an object, and full camera trajectory.




Type of Shape Structure

= Rigid: the 3D shape geometry is unknown but remains constant
along time.

= Non-Rigid: the 3D shape geometry is dynamic, i.e., the
configuration can change along time. Many possibilities can be
found:

> Isometric: the global shape is deformable, but some local
constraints can be enforced (distance between joints, etc.).

» Elastic: the shape configuration can change by producing,
bending- and stretching-like deformations.

> Many others. a4



Rigid vs. Non-Rigid — SfM vs. SLAM

Both problems are roughly the same.

Rigid and non-rigid objects were previously considered in both
frameworks.

In general, SLAM and rigid SfM formulations exploit a
perspective camera while NRSfM approaches use an
orthographic one.

» Calibration is known a priori and it is normally performed by
using a calibration pattern.

In this paper, our goal is to recover the camera calibration from
scratch, without assuming training data or calibration patterns.



Our Approach for Self-Calibration

Input: Just a monocular video.

Output: Camera trajectory, self-calibration and the 3D shape
geometry of a wide variety of objects (rigid, elastic, isometric,
etc.). Our solution is sequential, as the data arrives.

The self-calibration includes the parameters: focal length,
principal point and two distortion parameters.

Correspondences are computed automatically between
consecutive images.

No training data nor a calibration pattern are needed.



Motivation

Estimated 3D scene and camera motion # 1200

Image and tracked features

Textured map




Qualitative Comparison
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= Full calibration was considered for rigid shapes.



Qualitative Comparison
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= For non-rigid ones (just isometric deformations), only the focal
length was included and assuming a batch processing.



Qualitative Comparison

:};{E‘RFEM Tracking Self-Calibration Process Shape
' __\-""‘--._
Focal Full Batch | Sequential | Rigid Non-Rigid
Isometric | Elastic

[12]. [34] v v v v

[16] e v v v

[19]. [25]. [38] v v v e
[2]. [32] v v v v
[8] v v v v v
[14]. [33] v v v v v

Ours v v v e v v

= Qur approach is the only one that jointly retrieves the 3D
reconstruction (from rigid to non-rigid deformations), camera
trajectory, and the full self-calibration in a sequential manner.



Self-Calibration Non-Rigid SoG



Self-Calibration Non-Rigid SoG

Our approach consists in a Sum-of-Gaussians (SoG) filter to

Gaussianly combine G multivariate distributions as:
e mean

p(x)=) { J\f’(xﬁ;) |
=1 \ ——— Covariance
' weight factor
Every Gaussian distribution can come from an Extended
Kalman Filter (EKF), where both mean and covariance are
estimated by a prediction-update strategy.

The SoG filter combines several EKF solutions (a filter bank),
running in parallel.

Shape deformations are encoded by a finite-element model.



Non-Rigid SoG Filter
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Bank of EKF Filters



Problem Formulation

= The state of the camera is represented by a 18-dimensional
vector, considering both intrinsic and extrinsic parameters:

m = [c T T qT vT. wCT]T

c includes the calibration, r and q denote the camera position and
orientation, v and are the linear aw! angular velocities.

= The state of the shape is represented by a 3N-dimensional

vector, considering N 3D points as y = [g;... .. gy| " with g, =[x

= Given an image Zy, the goal is to estimate the EKF vector x = [m ' .

iy Yiy 24



Camera and Surface Motion Models

= The camera state function is represented by:
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= The shape state function is represented by:
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Gaussian Update and Pruning

= The contribution of every EKF filter is Gaussianly combined by
means of a weight coefficient, that is updated as:

g '7'£|1;—1 N(iiw—f Si|k—1)
klk — G s Q!
D g1 "?'}gu;._l N (1i|k—1' ng|k—1)
with i, = zi — hi(x{,_,) the innovation vector.

= The number of Gaussians is reduced by means of sequential
probability ratio test removing those with a low weight factor.

= An overall solution can be considered (only for visualization):
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Experimental Evaluation



Experimental Results

= Two blocks of real experiments:
» Non-Critical motion sequences.
 Rigid. Indoor general scenarios with loop closing.

* Non-Rigid. Rigid, elastic and quasi-isometric
deformations are included.

» Critical motion sequences.
* Rigid. Shape and/or calibration are ill-posed.

= |n total, seven hand-held camera videos are used.
= An offline calibration in employed to validate our estimation.



Non-Critical Motion Sequences

= The rigid case (general indoor conditions):

» Indoor sequence: a RGB camera with smooth motion is
observing a rigid scene.

» Loop closing sequence: in this case, the camera follows a
loop trajectory.

Indoor sequence Loop Closing sequence
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Non-Critical Motion Sequences

= The non-rigid case (synthetic and in-vivo materials):

» Silicone cloth sequence: a RGB camera with smooth
motion is observing a deformable silicone cloth.

» Laparoscopy sequence: an endoscope is observing a
rabbit abdominal cavity in a medical exploration.



Non-Critical Motion Sequences

= The non-rigid case (synthetic and in-vivo materials):

» Silicone cloth sequence: a RGB camera with smooth
motion is observing a deformable silicone cloth.
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Non-Critical Motion Sequences

= The non-rigid case (synthetic and in-vivo materials):

» Laparoscopy sequence: an endoscope is observing a
rabbit abdominal cavity in a medical exploration.




Critical Motion Sequences

= Shape and/or calibration is ill-posed:

» Pure rotation sequence: a RGB camera with smooth
motion is observing a rigid scene.

» Pure translation sequence: in this case, the camera follows
a loop trajectory.

» Parallel optical axis sequence.



Calibration Results

,_':""'----ﬂ___ Data Non-Critical Motion Sequences
Param. — |
Indoor Loop Closing Silicone Cloth Laparoscopy

Off-line | On-line (Ours) | Off-line | On-line (Ours) | Off-line On-line (Ours) Off-line | On-line (Ours)
afpixels] 19410 19324137 196.90 196.97+0.53 312.89 309.30+0.30 280.91 274.361+0.32
B [pixels] 160.20 158.94+0.92 153.50 159.14+1.41 157.66 158.60+0.11 184.48 166.00+0.18
ByIpixels] 128.00 128 85+0.99 130.80 131.224+1.19 121.32 119.21+0.11 133.48 136.06+0.17
ky[mm—2] .0623 .0661+.0023 0693 .07214.0028 .0094 .00564.0002 0054 .0078£.0004
ko[mm—*] .0139 .0122+.0008 .0109 .01074.0007 .00011 .00036=.00003 .00026 .0004+£.00004

= Qur approach can sequentially estimate the auto-calibration in a
wide variety of scenarios together with shape and motion:

» The principal point is better estimated for cycle-torsion
motions, as it is observed in the Indoor experiment.

» In general, the two distortion parameter estimations are
correlated, being difficult to recover everyone of them.

» Competitive solutions with respect to ground truth.



Calibration Results

p,_':""'----ﬂ___ Data Non-Critical Motion Sequences Critical Motion Sequences
Aram. —
Indoor Loop Closing Silicone Cloth Laparoscopy Pure Rotation Pure Translation Parallel Optical Axis
Off-line | On-line (Ours) | Off-line | On-line (Ours) | Off-line On-line (Ours) Off-line | On-line (Ours) | Off-line | On-line (Ours) | Off-line | On-line (Ours) | Off-line | On-line (Ours)

afpixels] 194.10 195.24+1.27 196.90 196.9710.53 312.89 309.30+0.30 280.91 274.36+0.32 19410 211.65+12.90 194.10 204144444 194.10 202.84+8.31
B [pixels] 160.20 158.94+0.92 153.50 159.14+1.41 157.66 158.60+0.11 184.48 166.00+0.18 160.20 158.68+6.07 160.20 156.4743.48 160.20 158.89+7.08
3yl pixels] 128.90 128.85+0.99 130.80 131.22+1.19 121.32 119.21+0.11 133.48 136.06+0.17 128.90 121.48+6.92 128.90 129.14+£3.13 128.90 116.51+5.98
ky[mm—2] .0623 .0661+.0023 .0693 .07214.0028 .0094 .00564.0002 0054 .0078+.0004 0623 06260073 .0623 06760048 0623 .0679+.0109
ko[mm—*] .0139 .0122+.0008 .0109 .01074.0007 .00011 .00036=.00003 .00026 .0004+£.00004 0139 .0098+.0024 .0139 .0088+.0015 0139 .01214.0032

= As expected, for some motions we cannot recover a good
solution. As no prior is assumed about the type of motion:

» A general estimation is obtained.

» When the shape and/or motion is incorrect, the calibration
is anecdotic. The joint solution is bad (see Pure Rotation).

» Some scenarios allow the estimation of shape and motion,
but not the calibration (see Parallel Optical Axis).
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