ICPR 2020 Graph-based Interpolation of Feature Vectors for Accurate Few-Shot Classification

By: Yuqing Hu, Vincent Gripon, Stéphane Pateux

Jan. 12th, 2020

Few-Shot Image Classification

Image Classification with few labelled data

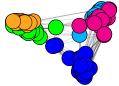
→ Model likely to overfit.

Transfer Learning

→ A model developed for a task is reused as the starting point for a model on a second task.

Graph Neural Network

→ A type of Neural Network which directly operates on the Graph structure, gathering transductive information between nodes.



Problem settings

ls-shot, K_n -way transductive classification

 \rightarrow Given a task containing K_n classes, s labelled images (support set) and Q/K_n unlabelled images per class, the goal is to predict the class of the Qunlabelled images (query set).

Support The chair Query Table chair

Dataset

→ minilmageNet (64 base classes, 16 validation classes, 20 novel classes).

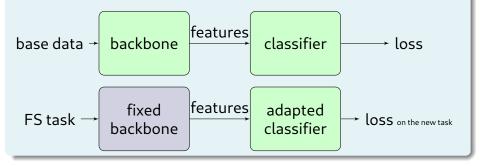
Benchmark settings

→ Typically, $K_n = 5$, s = 1 or 5, Q = 75 (number of unlabelled inputs $q = Q/K_n = 15$ per class). Accuracy averaged on 10,000 randomly drawn tasks from novel classes.

Methodology: first step (transfer learning)

Transferring knowledge from the large training database (64 classes with 600 samples/class)

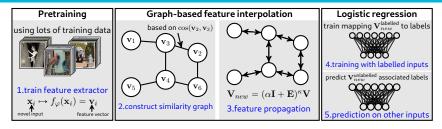
Exploit the **features** of **few data samples** after going through a **pretrained backbone** for **classifying new classes**.



Snell, Jake, Kevin Swersky, and Richard Zemel. "Prototypical networks for few-shot learning." 2017. Wang, Yan, et al. "SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning." 2019.

Yuqing Hu (IMT Atlantique; Orange Labs)

Methodology: transductive few-shot using graphs



- Pretraining Train a backbone deep neural network able to discriminate inputs from the base class dataset.
- Graph-based feature interpolation Firstly, construct a graph $G_T(\mathbf{V}, \mathbf{E})$ where vertices matrix \mathbf{V} contains the stacked features of labelled and unlabelled inputs. Build the adjacency matrix \mathbf{E} based on a k nearest neighbor graph using cosine similarity function $\cos(\cdot, \cdot)$. Secondly, apply feature propagation to obtain new features \mathbf{V}_{new} for each vertex.
- **Logistic regression** Learn a linear classifier on the new labelled features $V_{new}^{\text{labelled}}$ and use the classifier to predict the class of query set $V_{new}^{\text{unlabelled}}$.

Comparison with state-of-the-art methods

		minilmageNet	
Method	Backbone	1-shot	5-shot
MAML	ResNet18	$49.61 \pm 0.92\%$	$65.72 \pm 0.77\%$
Baseline++	ResNet18	$51.87 \pm 0.77\%$	$75.68 \pm 0.63\%$
Matching Networks	ResNet18	$52.91 \pm 0.88\%$	$68.88 \pm 0.69\%$
ProtoNet	ResNet18	$54.16 \pm 0.82\%$	$73.68 \pm 0.65\%$
SimpleShot	ResNet18	$63.10 \pm 0.20\%$	$79.92 \pm 0.14\%$
S2M2_R	ResNet18	$64.06 \pm 0.18\%$	$80.58 \pm 0.12\%$
LaplacianShot	ResNet18	$72.11 \pm 0.19\%$	$82.31 \pm 0.14\%$
Transfer+Graph Interpolation (ours)	ResNet18	${\bf 72.40 \pm 0.24\%}$	${\bf 82.89 \pm 0.14\%}$
ProtoNet	WRN	$62.60 \pm 0.20\%$	$79.97 \pm 0.14\%$
Matching Networks	WRN	$64.03 \pm 0.20\%$	$76.32 \pm 0.16\%$
S2M2_R	WRN	$64.93 \pm 0.18\%$	$83.18 \pm 0.11\%$
SimpleShot	WRN	$65.87 \pm 0.20\%$	$82.09 \pm 0.14\%$
SIB	WRN	$70.00 \pm 0.60\%$	$79.20 \pm 0.40\%$
BD-CSPN	WRN	$70.31 \pm 0.93\%$	$81.89 \pm 0.60\%$
LaplacianShot	WRN	$74.86 \pm 0.19\%$	$84.13 \pm 0.14\%$
Transfer+Graph Interpolation (ours)	WRN	${\bf 76.50 \pm 0.23\%}$	${\bf 85.23 \pm 0.13\%}$

		CUB	
Method	Backbone	1-shot	5-shot
S2M2_R	ResNet18	$71.43 \pm 0.28\%$	$85.55 \pm 0.52\%$
ProtoNet	ResNet18	$72.99 \pm 0.88\%$	$86.64 \pm 0.51\%$
Matching Networks	ResNet18	$73.49 \pm 0.89\%$	$84.45 \pm 0.58\%$
LaplacianShot	ResNet18	80.96%	88.68%
Transfer+Graph Interpolation (ours)	ResNet18	$86.05 \pm 0.20\%$	$90.87 \pm 0.10\%$
S2M2_R	WRN	$80.68 \pm 0.81\%$	$90.85 \pm 0.44\%$
Transfer+Graph Interpolation (ours)	WRN	$88.35 \pm 0.19\%$	$92.14 \pm 0.10\%$
		CIFAR-FS	
Method	Backbone	1-shot	5-shot
BD-CSPN	WRN	$72.13 \pm 1.01\%$	$82.28 \pm 0.69\%$
S2M2_R	WRN	$74.81 \pm 0.19\%$	$87.47 \pm 0.13\%$
SIB	WRN	$80.00 \pm 0.60\%$	$85.30 \pm 0.40\%$
Transfer+Graph Interpolation (ours)	WRN	$83.90 \pm 0.22\%$	${\bf 88.76 \pm 0.15\%}$

Conclusion

- Introduction of a novel method to solve the few-shot transductive classification problem. It consists in combining three steps: a pretrained backbone, a graph-based interpolation technique and a logistic regression.
- Proposed method obtained state-of-the-art results, with the most important gains in the case of 1-shot classification.
- Proposed method requires to tune few hyperparameters, and these have a little impact on accuracy. We thus believe that it is an applicable solution to many practical problems.
- There are still open questions to be addressed, such as the case of imbalanced classes, or settings where prediction must be performed on streaming data, one input at a time.

See the paper for more details: arxiv.org/abs/2001.09849