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Architecture-Overview
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Architecture - LiteFlowNet360 is inspired by Lite-FlowNet.
Feature Extractions Layers are replaced with “Spherical
Convolution Learnable Layers”
using transformer network. We did flow inference by projecting
the feature map to tangential plane, rather than learning
inference/regularization layer.



Approach
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Representation Learning

(Fy(X k=
TRANSFORM Fe(X) = 0(X) (1)
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Vi = Fi(X),Y, = F(Fr(X),Q)

Lk = HYkC — YkHQ This is done in tangential planes, so multiple L,
1 &
* Multiple variable size kernels are learned, L, = — E Lk(Q(Yéi),Y,j)
these kernels are used to perform convolution in Mg
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Spherical domain(that is in projected tangential planes)




Representation Refinement
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Domain Transfer

FINAL
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Domain Transfer
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Fig. 5. Final Refinement process. Network from second stage is extended to have two parallel weight sharing architecture.
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Warping
Correction
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. {1 ifs|Aingl <€ . *There is no boundary case for warping.
Oinj = M; © ((1 — Mj) + Oj) *Warping in 2D domain doesn’t make sense
*Warping must be done in spherical domain.
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Quantitative Results

RESULTS ON SINTEL360 DATASET.

Model Data #Layers EPE L

LiteFlowNet[9] Sintel360 O ~ 635 ~ 1.30
LiteFlowNet +[14] Sintel360 > 4 > 17 > 3.06
Ours, Stage-2 Sintel360 4 ~ 635 ~ 0.70
Ours, Final Sintel360 4 ~ 395 ~ 0.60




Qualitative Results

Conclusion

Flow Using Cube-maps only  cype map using Lite-Flownet OURS

Flow representations adapt (Equirectangular Projection)
to represent 360 properties

STAGE-2
(Equirectangular Projection)




<Conclusion>

LiteFlowNet360 is more of a domain
adaption approach to estimate Optical
flow for 360 Videos. The core idea is to
light on fundamental considerations
before exploiting off-the-shelf trained
models.
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