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Versatility of Deep Neural Networks

Breast Cancer Detection
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Tseng et al. Machine learning and imaging informatics in oncology. Oncology 2020.

Autonomous Driving

Face
Recognition

https://bit.ly/3gg
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Response Time

Hardware Constraints

Memory Consumption

+ Hardware Design Cost

+ Costly Conversion Process

Solution: Deep Neural Network Compression

Performance



Compression Approaches

Low-rank Approximations:
e Jaderberg et al. Speeding up Convolutional Neural Networks with Low Rank Expansions. In
BMVC 2014.

Quantization:
e Courbariaux et al. Binaryconnect: Training deep neural networks with binary weights during
propagations. NeurlPS 2015.

Knowledge Distillation:
e Lu et al. March. Knowledge distillation for small-footprint highway networks. In ICASSP 2017.

Pruning:
e Han et al. Learning both weights and connections for efficient neural network. In NeurlPS 2015.



Pruning Approaches

Unstructured Structured Hybrid
e Standard objective e Standard objective function e  Standard objective function
function with sparsity and/or sparsity
e Pruning Criteria: Simple e Pruning Criteria: Simple e Pruning Criteria:
threshold, [, - norm, etc. threshold Weight-based threshold
e Minimal downstream e Insufficient analysis of e Inherits disadvantages of
impact consideration learned features both approaches

Common Theme: Simple, Deterministic constraints on weights




Alternative Hypothesis

Deep Weight-based MI-based
Network Pruning Pruning
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Goal: “We seek to develop a stochastic model of the dependency or flow of information between
filters of a deep neural network”

Our Choice: Mutual Information




MINT: Basic Building Blocks

Pruning
B Dependency B Threshold &
Train Between Remove Re-Train
Filters Filters

e Develop mutual information as measure of dependency between filters

e Simple and extendable pruning approach



MINT: Dependency Between Filters
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[1] Yasaei Sekeh, S. and Hero, A.O., 2019. Geometric estimation of multivariate dependency. Entropy, 21(8), p.787.



MINT: Threshold and Remove Filters

Compile

Dependency scores
arranged as weight matrix

Sort and Threshold
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Threshold: n'" percentile
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MINT: Benchmark Results

CIFAR10 - VGG16 CIFAR10 - ResNet56 ILSVRC2012 - ResNet50
Method Pruned (%)  TestAcc. (%) Method  Pruned (%) TestAcc. (%) Method  Pruned (%) TestAcc. (%)
Base N/A 93.98 Base N/A 92.55 Base N/A 76.13
i GALP! 11.80 93.38 GALP! 16.86 71.95
Pruning 64.00 93.40
Filters!"
Pruning 13.70 93.06 OEDP! 25.68 73.55
sssi 73.80 93.02 Filters!']
2 27. 741
GALP! 82.20 93.42 NISPH 42.40 93.01 SSS 05 8
[4]
MINT 83.46 93.43 OED™ 43.50 93.29 NISP 4982 199
iNetl®!
MINT 52 41 93.47 ThiNet 51.45 71.01

[1] Li et al. Pruning filters for efficient convnets. ICLR 2017

[2] Huang and Wang. Data-driven sparse structure selection for deep neural networks. ECCV 2018. MINT 49.62 71.05
[3] Lin et al. Towards optimal structured cnn pruning via generative adversarial learning. CVPR 2019.

[4] Yu et al. Nisp: Pruning networks using neuron importance score propagation. CVPR 2018.

[5] Wang et al. Pruning blocks for cnn compression and acceleration via online ensemble distillation. IEEE Access 2019

[6] Luo et al. Thinet: A filter level pruning method for deep neural network compression. ICCV 2017.



Thank You

Feature Maps: Before Feature Maps: After Calibration Adversarial Response
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More detailed analyses available in the paper:
https://arxiv.org/pdf/2003.08472



https://arxiv.org/pdf/2003.08472

