

MINT: Deep Network Compression via Mutual Information-based Neuron Trimming

Madan Ravi Ganesh, Jason J. Corso, and Salimeh Yasaei Sekeh

Versatility of Deep Neural Networks

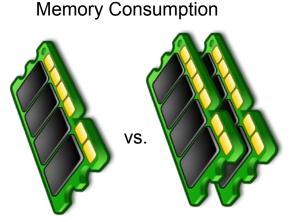
Breast Cancer Detection Train deep mode whole slide image training Test whole slide image patches tumor prob. map Tseng et al. Machine learning and imaging informatics in oncology. Oncology 2020. Face aws 6 6 Recognition https://bit.ly/3ggIHYc se-estimation-2d-quide 10 13

Autonomous Driving

Pose Estimation

Hardware Constraints

Response Time



Performance

- + Hardware Design Cost
- + Costly Conversion Process

Solution: Deep Neural Network Compression

Compression Approaches

Low-rank Approximations:

• Jaderberg et al. Speeding up Convolutional Neural Networks with Low Rank Expansions. In BMVC 2014.

Quantization:

• Courbariaux et al. *Binaryconnect: Training deep neural networks with binary weights during propagations*. NeurIPS 2015.

Knowledge Distillation:

• Lu et al. March. Knowledge distillation for small-footprint highway networks. In ICASSP 2017.

Pruning:

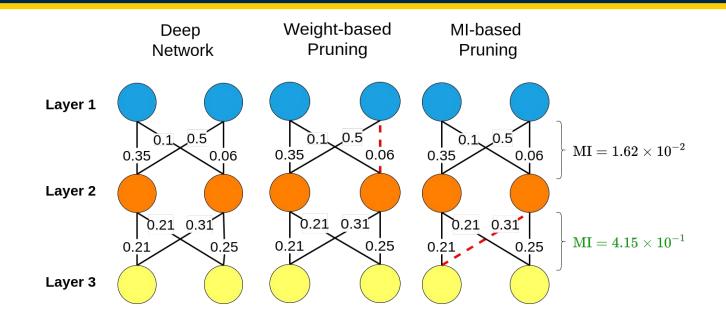
• Han et al. Learning both weights and connections for efficient neural network. In NeurIPS 2015.

Pruning Approaches

Unstructured	Structured	Hybrid		
 Standard objective function Pruning Criteria: Simple threshold, l₁ - norm, etc. Minimal downstream impact consideration 	 Standard objective function with sparsity Pruning Criteria: Simple threshold Insufficient analysis of learned features 	 Standard objective function and/or sparsity Pruning Criteria: Weight-based threshold Inherits disadvantages of both approaches 		

Common Theme: Simple, Deterministic constraints on weights

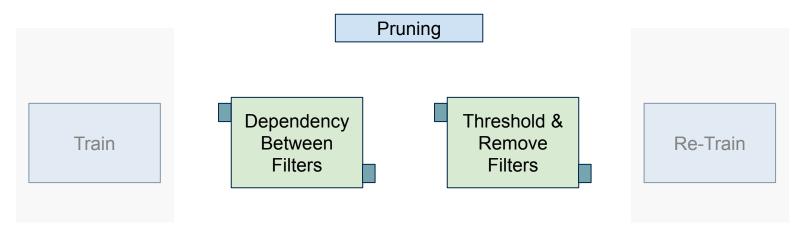
Alternative Hypothesis



Goal: *"We seek to develop a stochastic model of the dependency or flow of information between filters of a deep neural network"*

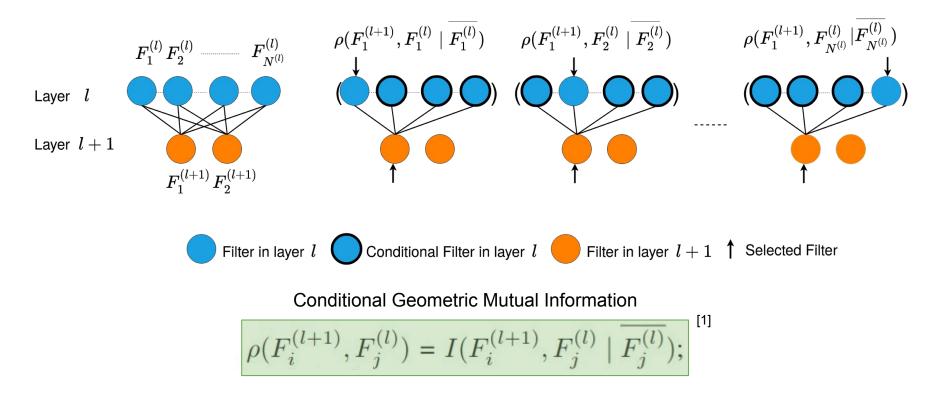
Our Choice: Mutual Information

MINT: Basic Building Blocks



- Develop mutual information as measure of dependency between filters
- Simple and extendable pruning approach

MINT: Dependency Between Filters



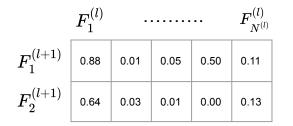
[1] Yasaei Sekeh, S. and Hero, A.O., 2019. Geometric estimation of multivariate dependency. Entropy, 21(8), p.787.

MINT: Threshold and Remove Filters

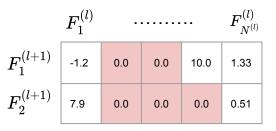
Compile

Sort and Threshold

Remove Filters



0.00 0.01		0.88
-----------	--	------



Dependency scores arranged as weight matrix

Threshold: nth percentile

Corresponding values in weight matrix removed

9

MINT: Benchmark Results

CIFAR10 - VGG16

CIFAR10 - ResNet56

ILSVRC2012 - ResNet50

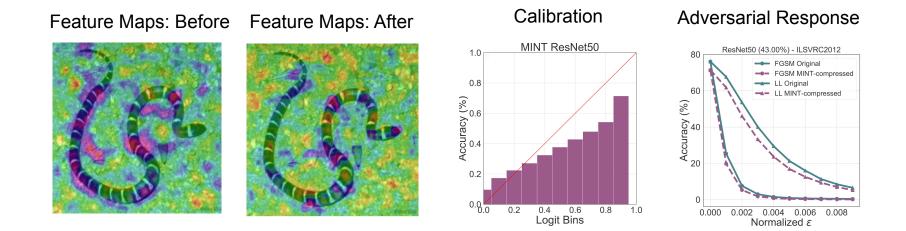
Method	Pruned (%)	Test Acc. (%)	Method	Pruned (%)	Test Acc. (%)	Method	Pruned (%)	Test Acc. (%)
Base	N/A	93.98	Base	N/A	92.55	Base	N/A	76.13
Pruning Filters ^[1]	64.00	93.40	GAL ^[3]	11.80	93.38	GAL ^[3]	16.86	71.95
SSS ^[2]	73.80	93.02	Pruning Filters ^[1]	13.70	93.06	OED ^[5]	25.68	73.55
GAL ^[3]	82.20	93.42	NISP ^[4]	42.40	93.01	SSS ^[2]	27.05	74.18
MINT	83.46	93.43	OED ^[5]	43.50	93.29	NISP ^[4]	43.82	71.99
			MINT	52.41	93.47	ThiNet ^[6]	51.45	71.01
[2] Huang and V	Vang. Data-driven sp	t convnets. ICLR 2017 parse structure selection for red cnn pruning via gener	MINT	49.62	71.05			

[4] Yu et al. Nisp: Pruning networks using neuron importance score propagation. CVPR 2018.

[5] Wang et al. Pruning blocks for cnn compression and acceleration via online ensemble distillation. IEEE Access 2019

[6] Luo et al. Thinet: A filter level pruning method for deep neural network compression. ICCV 2017.

Thank You



More detailed analyses available in the paper: <u>https://arxiv.org/pdf/2003.08472</u>