

Fast Region-Adaptive Defogging and Enhancement for Outdoor Images Containing Sky (# 2267)

Zhan LI Department of Computer Science, Jinan University Guangzhou, China

Coauthored with:

Xiaopeng Zheng, Bir Bhanu, Shun Long, Qingfeng Zhang, Zhenghao Huang

Fast Region-Adaptive Defogging and Enhancement for Outdoor Images Containing Sky

Introduction

Outdoor images has a much larger depth of field (DOF) that spans from the infinite sky to the nearby objects.

Challenge

Dehazing by traditional image enhancement techniques

- > White objects and the sky regions tend to be over-enhanced with color distortions and halos;
- Complexity & efficiency

Contributions

- RADE -- region-adaptive image dehazing and enhancement for real-world hazy outdoor scenes with a large range of DOF.
 - \checkmark Replaceable plug-in region segmentation module;
 - ✓ Luminance-inverted MSRCR (a Retinex-based method);
 - ✓ Region-ratio-based adaptive Gamma correction;
 - ✓ Seamless stitching.

Fast Region-Adaptive Defogging and Enhancement for Outdoor Images Containing Sky

Method

Method

Step 1: Segmentation

Method

- Step 2: Luminance-inverted MSRCR
 - ✓ Original MSRCR

Multi-Scale Retinex (MSR) with Color Restoration

$$R_{MSRCRi} = C_i \cdot R_{MSRi}, \quad (2) \qquad C_i = \beta ln \left(a I_i / \sum_{c=1}^{N} I_c \right), \quad (3)$$

✓ Invert intensity (CVPR'18): Retinex-based method → Image dehazing

$$Dehazing(I) = 1 - Retinex(1 - I), \qquad (4)$$

✓ Luminance-inverted MSRCR:

$$Invert _MSR(Y) = 1 - MSR(1 - Y),$$
(5)
$$J_{MSRCRi} = e^{R_{MSRCRi}} = e^{C_i \cdot R_{MSRi}} = (e^{R_{MSRi}})^{C_i} = (J_{MSRi})^{C_i},$$
(6)

Step 3: Region-ratio-based Adaptive Gamma Correction

Fig. Overview of the proposed RADE for defogging

Method

Step 4: Seamless Stitching -- fade-in & fade-out

$$J_{out} = (1 - F_{k \times k} * M_{gray}) \cdot J_{other} + (F_{k \times k} * M_{gray}) \cdot J_{gray}, \quad (9)$$

a mean filter convolution operator

$$M_{gray} = Mask_{gray}(x, y) = \begin{cases} 1 & (t_1 < Y(x, y) < t_2) \\ 0 & otherwise \end{cases}, \quad (10)$$

Method

Summary of Differences from Previous Work

Method	Ours	[4]	[5]	[13]	[14]	[15]	[16]	[17]	[18]
Prior-based		\checkmark			\checkmark	\checkmark		\checkmark	\checkmark
Retinex-based	\checkmark	\checkmark	\checkmark	\checkmark					
Sky segmentation	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Region-adaptive	\checkmark						\checkmark		
Plug-in segmentation	\checkmark								
Luminance MSRCR	\checkmark								
White objects	\checkmark								
Invert intensity	\checkmark		\checkmark						
Adaptive Gamma	\checkmark			\checkmark		\checkmark	\checkmark		

Fast Region-Adaptive Defogging and Enhancement for Outdoor Images Containing Sky

Experiments

Hazy Input

Experiment

Advantages of RADE:

✓ Better visibility & less color distortions

Hazy Input

Advantages of RADE:✓Better visibility & more details✓Color fidelity & sky-preserved

✓ average gradient (AG), contrast (σ^2), information entropy (IE) color correlation (COR), fog aware density evaluator (FADE)

Method	AG	σ^2	IE	COR	FADE
Input	11.85	7.14	6.63	1.0000	1.600
CAP [9]	15.36	7.15	6.59	0.9982	0.740
DehazeNet [10]	15.20	7.25	7.87	0.9994	0.778
NLD [7]	18.76	7.35	13.06	0.9970	0.312
F-DCP [8]	20.00	7.36	11.05	0.9993	0.821
PDN [11]	13.49	7.24	8.14	0.9991	0.758
GDN [12]	15.80	7.20	7.79	0.9978	0.557
MSRCR [4]	13.95	7.56	13.78	0.9988	0.431
Invert MSRCR [6]	14.09	7.19	15.45	0.9990	1.002
CLAHE [20]	11.92	7.41	16.07	0.9996	0.664
RADE (ours)	19.00	7.59	20.05	0.9998	0.439

Table. Quantitative comparisons on LIVE 500 foggy image set

> Efficiency

Table. Comparisons of average runtime (in seconds)

Method	CAP [8]	DehazeNet [9]	NLD [6]	F-DCP [7]	PDN [10]	GDN [11]	RADE (ours)
LIVE-500	0.928	3.362	7.775	0.815	3.541	10.726	0.670
Test-48	1.177	3.438	7.928	0.983	4.059	13.873	0.815

> Efficiency

Table. Comparisons of average runtime (in seconds)

Method	CAP [8]	DehazeNet [9]	NLD [6]	F-DCP [7]	PDN [10]	GDN [11]	RADE (ours)
LIVE-500	0.928	3.362	7.775	0.815	3.541	10.726	0.670
Test-48	1.177	3.438	7.928	0.983	4.059	13.873	0.815

> Ablation Study

Table. 4 Major processes & 4 segmentation methods

			V		
Step	AG	σ^2	IE	COR	FADE
$J_{M\!S\!R}$	13.50	7.57	16.44	1.0000	0.626
CR	17.03	7.20	18.58	1.0000	0.595
Gamma	22.55	7.33	20.27	0.9997	0.409
Treshold+RADE	19.00	7.59	20.05	0.9998	0.439
K-means+RADE	18.95	7.60	20.05	0.9998	0.440
DCP+RADE	17.76	7.48	19.04	0.9999	0.679
DNN+RADE	17.47	7.58	19.48	0.9999	0.496

Fast Region-Adaptive Defogging and Enhancement for Outdoor Images Containing Sky

Conclusions

Conclusions

> Summary

We proposed RADE for image dehazing of both distant and nearby regions.

✓ Better visibility & more details;

- ✓ Effective & efficient;
- \checkmark With color fidelity & sky-preserved.

➤ Future

- \checkmark more accurate and adaptive segmentation for extreme cases;
- \checkmark a global consistency regularization for more reasonable fusion.

Fast Region-Adaptive Defogging and Enhancement for Outdoor Images Containing Sky

Welcome to our poster! #2267

The MATLAB code for our paper:

https://github.com/lizhangray/FADE