

COVID-1

positive

Teacher-Student Competition for Unsupervised Domain Adaption

Ruixin Xiao¹, Zhilei Liu¹, and Baoyuan Wu²

Email: zhileiliu@tju.edu.cn

 ¹ College of Intelligence and Computing Tianjin University, China
²School of Data Science, Chinese University of Hong Kong, Shenzhen, China

January 15, 2021

Outline

- Introduction
- Proposed Method
- Experiment and Discussion
- Conclusion

Domain Shift

Labeled Source Dataset

Unlabeled Target Dataset

Domain Shift

IIAPR @

OIEEE

COMPUT

Unsupervised Domain Adaptation(UDA)

Motivation

Motivation

Motivation

Motivation

□ Target-specific student network

□ To alleviate the source-biased problem, a target-specific student network is built to

learn a target-specific feature space.

Competition mechanism

A novel pseudo-label selection strategy, in which pseudo-labels from teacher network and student network compete to be the final pseudo-label training for student network.

Proposed Method

Proposed Method

Teacher network

$$L_{G_1}(F_1, G_1) = \frac{1}{n_s} \sum_{i=1}^{n_s} \ell(G_1(F_1(x_i^s)), y_i^s)$$

11

[1] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation[C]. ICML2015:1180–1189. [2] M. Long, Z. Cao, J. Wang, and M. I. Jordan. Conditional adversarial domain adaptation[C]. NIPS 2018:1640–1650..

Proposed Method

Outline Introduction **Experiment and Discussion** Conclusion

COMPUTE

Proposed Method

JTSC

Teacher-Student Competition for Unsupervised Domain Adaption 13 Ruinxin Xiao, Zhilei Liu, and Baoyuan Wu

Proposed Method

Proposed Method

TSC

Overall Objective Function

$$L = L_{G_1}(F_1, G_1) - \lambda L_{D_1}(F_1, D_1) + \beta L_{G_2}(F_2, G_2)$$

Experimental Conditions

Dataset

- □ ImageCLEF-DA: I, P and C. 12 categories. 50 images per category.
- □ Office-31: A, W, and D. 4,652 images in 31 categories.

Implementation Details

- ❑ PyTorch using the SGD optimizer: minibatch size of 36, a weight decay of 0.0005, and a momentum of 0.95.
- □ learning rate of the layers trained from scratch are set to be **10 times** those of finetuned layers
- \Box $\lambda = 1.0$ and $\beta = 0.3$

Quantitative Evaluation

Table 4-1 Accuracy (%) on ImageCLEF-DA for unsupervised domain adaptation (ResNet-50).

Methods	I→P	P→I	I→C	C→I	C→P	Р→С	AVG
RestNet-50	7 4.8±0.3	91.5±0.3	83.9±0.1	78.0±0.2	65.5±0.3	91.2±0.3	80.7
DAN	74.5±0.4	82.2±0.2	92.8±0.2	86.3±0.4	69.2±0.4	89.8±0.4	82.5
DANN	75.0±0.6	86.0±0.3	96.2±0.4	87.0±0.5	74.3±0.5	91.5±0.6	85.0
JAN	76.8±0.4	88.0±0.2	94.7±0.2	89.5±0.3	74.2±0.3	91.7±0.3	85.8
MADA	75.0±0.3	87.9±0.2	96.0±0.3	88.8±0.3	75.2±0.2	92.2±0.3	85.8
CDAN	76.7±0.3	90.6±0.3	97.0±0.4	90.5±0.4	74.5±0.3	93.5±0.4	87.1
CDAN+E	77.7±0.3	90.7±0.2	97.7 ±0.3	91.3±0.3	74.2±0.2	94.3±0.3	87.7
iCAN	79.5	89.7	94.7	89.9	78.5	92.0	87.4
 rDANN+CAT	77.2±0.2	91.0±0.3	95.5±0.3	91.3±0.3	75.3±0.6	93.6±0.5	87.3
TSC+DANN	78.3±0.2	92.8±0.3	96.8±0.2	90.3±0.5	74.5±0.7	96.0±0.2	88.1
TSC+CDAN	79.0 ±0.3	93.2 ±0.5	97.2 ±0.4	92.7 ±0.2	77.4 ±0.4	96.5 ±0.3	89.3

Quantitative Evaluation

Table 4-2 Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet-50).

Methods	A→W	D→W	W→D	A→D	D→A	W→A	AVG	
RestNet-50	68.4±0.2	96.7±0.1	99.3±0.1	68.9±0.2	62.5±0.3	60.7±0.3	76.1	
DAN	80.5±0.4	97.1±0.2	99.6±0.1	78.6±0.2	63.6±0.3	62.8±0.2	80.4	
DANN	82.0±0.4	96.9±0.2	99.1±0.1	79.7±0.4	68.2±0.4	67.4±0.5	82.2	
JAN	85.4±0.3	97.4±0.2	99.8±0.2	84.7±0.3	68.6±0.3	70.0±0.4	84.3	
MADA	90.0±0.1	97.4±0.1	99.6±0.1	87.8±0.2	70.3±0.3	66.4±0.3	85.2	
GTA	89.5±0.5	97.9±0.3	99.8±0.4	87.7±0.5	72.8±0.3	71.4±0.4	86.5	
CDAN	93.1±0.2	98.2±0.2	100.0 ±0.0	89.8±0.3	70.1±0.4	68.0±0.4	86.6	
CDAN+E	94.1±0.1	98.6±0.1	100.0 ±0.0	92.9±0.2	71.0±0.3	69.3±0.3	87.7	
iCAN	92.5	98.8	100.0	90.1	72.1	68.9	87.2	
rDANN+CAT	94.4±0.1	98.0±0.2	100.0 ±0.0	90.8±1.8	72.2±0.6	70.2±0.1	87.6	
TSC+DANN	85.0±0.3	98.0±0.1	100.0 ±0.0	80.3±0.4	69.3±0.2	67.7±0.1	83.4	
TSC+CDAN	94.6 ±0.3	98.2±0.2	100.0 ±0.0	94.7 ±0.1	74.0 ±0.2	71.6 ±0.7	88.9	

Quantitative Evaluation

Fig. 4-1:Accuracy of TSC+DANN on A→W in office-31

Quantitative Evaluation

(a) TSC+DANN

(b) TSC+CDAN

Fig. 4-2: Pseudo-labeling accuracy comparision on task $P \rightarrow C$ in ImageCLEF-DA.

Visualization

(a) $M_{\mathbb{T}}$ in TSC+DANN (b) $M_{\mathbb{S}}$ in TSC+DANN (c) $M_{\mathbb{T}}$ in TSC+CDAN (d) $M_{\mathbb{S}}$ in TSC+CDAN

Fig. 4-3: The t-SNE visualization of target features on task $P \rightarrow C$ in ImageCLEF-DA.

Conclusion

Conclusion.

Our proposed TSC significantly outperforms the state-of-the-art domain adaption methods.

□ More separable target feature space can be achieved by introducing our competition

model to tackle the source-bias problem.

Generation Future Work

 \Box consider to set the hyper parameter T_p dynamically and smoothly to improve the performance further

COVID-1

positive

Teacher-Studer Gaaga KS Unsupervised Domain Adaption

Ruixin Xiao¹, **Zhilei Liu**¹, and Baoyuan Wu²

Email: zhileiliu@tju.edu.cn

 ¹ College of Intelligence and Computing Tianjin University, China
²School of Data Science, Chinese University of Hong Kong, Shenzhen, China

January 15, 2021