Human Embryo Cell Centroid Localization and Counting in Time-Lapse Sequences

Lisette Lockhart*, Parvaneh Saeedi*, Jason Au[†], Jon Havelock[†] * School of Engineering Science, Simon Fraser University [†] Pacific Centre for Reproductive Medicine

MOTIVATION

In Vitro Fertilization (IVF) Treatment

- More than 30,000 treatments performed annually in Canada [1]
 - Low success rate (~3.5 embryo transfers per pregnancy [1])
- Transferring highest quality embryos will improve likelihood of implantation
 - Monitor embryos during *in vitro* development with timelapse imaging to assess quality
- Knowing when embryonic cells divide is indicative of embryo quality [2],[3]
 - Annotation is time-consuming and subjective
 - Automate cell centroid localization to measure cell stage quickly and objectively

RELATED WORK

Cell Counting in Images - Classification

- Minimal annotations required (cell stage onset)
- Uses Convolutional Neural Network (CNN)
 classification models
- Cannot capture cell orientation or movement of cells across sequence

RELATED WORK

Cell Counting in Images - Localization

- More annotations needed (cell centroid coordinates)
- Uses CNN segmentation models with structured regression output layer
- Captures more information about cells enabling further assessment

Network Architecture

- Fully convolutional regression network
 - ResNet-18 feature encoder
 - Progressive Upsampling Convolution
- Weighted mean squared error
 - Address severely imbalanced foreground/background pixels
 - m,n: pixel height, width
 - y: ground truth regression mask
 - ŷ: predicted regression mask
 - α_0 and α_1 : adjustable weighting parameters

$$\mathcal{L}(y,\hat{y}) = \sum_{n=1}^{N} \sum_{m=1}^{M} \frac{((y_{m,n} - \hat{y}_{m,n})^2 \cdot ((\alpha_0 \cdot \frac{y_{m,n}}{\max y}) + \alpha_1))}{M \cdot N}$$

Temporal Context Prior

- Cell centroid location and cell count rely considerably on previous frame
 - Add centroid regression mask from previous frame to provide context (Multi-Input I)
- Centroid mask from previous frame has no indication of cell movement
 - Add optical flow diagram between subsequent frames to provide context (Multi-Input II)
- Encode context as attention with squeeze-excitation
 - Add attention modules to layers with most channels

Sampling Procedure

- Very little movement between most frames
- Avoids grouping together similar samples

Al	gorithm 1: Training with predicted outputs from				
pr	previous frame				
Ι	nput: sequence frames X_1 , predicted centroid masks				
from previous frame $\hat{\mathbb{X}}_2$					
Output: centroid masks \mathbb{Y} , predicted centroid masks $\hat{\mathbb{Y}}$					
while loss not plateaued do					
1	Train on $([\mathbf{x}_1^{(i)}, \hat{\mathbf{x}}_2^{(i)}], \mathbf{y}^{(i)}), i \in \{2, 3,, N\}$ on all				
	sequences in training set for one epoch				
2	Predict on $([\mathbf{x}_1^{(i)}, \hat{\mathbf{x}}_2^{(i)}], \mathbf{y}^{(i)}), i \in \{1, 2,, (N-1)\}$				
3	Store $\hat{\mathbf{y}}^{(i)}, i \in \{1, 2,, (N-1)\}$ as				

Store
$$\hat{\mathbf{y}}^{(i)}, i \in \{1, 2, ..., (N-1) \\ \hat{\mathbf{x}}_{2}^{(i)}, i \in \{2, 3, ..., N\}$$

Network Architecture Overview

EXPERIMENTAL SETUP

Dataset Overview

108 human embryo sequences

- 1-4 cell stage
- 78-230 frames per sequence
- Dot-annotated centroids
 - Gaussian filter applied to create heatmaps
- Training, validation, and test sets randomly selected as 70%/15%/15% of sequences
 - 5-fold cross-validation

EXPERIMENTAL RESULTS

Cell Centroid Localization

Model	Distance to nearest centroid (in pixels)					
Widdei	1-cell	2-cell	3-cell	4-cell	Total	
U-Net [29]	2.88	4.25	4.72	4.43	4.24	
Cell-Net [21]	2.97	4.14	4.94	4.68	4.38	
Multi-Input I (Proposed)	2.51	3.98	4.73	4.28	4.05	
Multi-Input II (Proposed)	2.57	3.95	4.35	4.20	3.98	

Detection: < 5 pixels from nearest ground truth centroid
Near Miss: ≥ 5 and < 8 pixels from nearest ground truth centroid
Total Miss: ≥ 8 pixels from nearest ground truth centroid

Model	Cell detection rate (in %)				
Widder	Detection	Near Miss	Total Miss		
U-Net [29]	80.0	11.7	8.3		
Cell-Net [21]	77.1	11.9	11.0		
Multi-Input I (Proposed)	80.1	11.0	8.9		
Multi-Input II (Proposed)	80.9	11.3	7.8		

EXPERIMENTAL RESULTS

Cell Counting

Cell Stage Acc. =
$$\frac{TP_i + TN_i}{\sum_{s=1}^S N_s}, i \in \{1, 2, 3, 4\},$$
$$Total Acc. = \frac{\sum_{i=1}^4 TP_i}{\sum_{s=1}^S N_s},$$

Model	Cell Stage Prediction Accuracy (in %)				
Widdei	1-cell	2-cell	3-cell	4-cell	Total
U-Net [29]	92.8	67.4	61.6	78.4	77.7
Cell-Net [21]	96.2	81.8	67.5	62.3	77.5
Multi-Input I (Proposed)	97.7	78.8	69.2	68.6	79.3
Multi-Input II (Proposed)	95.7	74.7	69.0	75.8	80.2

CONCLUSIONS

- Structured regression suitable for cell centroid localization and counting in embryo sequences
- Foreground/background pixel imbalance relaxed using weighted error and temporal relationship in embryo development
- Training strategy samples diverse batches of data for network gradient updates

REFERENCES

[1] Canadian Fertility & Andrology Society: Canadian Assisted Reproductive Technologies Register Plus (CARTR Plus), https://cfas.ca/cartrannualreports.html. Last accessed 2019 Dec 19.

[2] Jacobs, C., Nicolielo, M., Erberelli, R., Mendez, F., Fanelli, M., Cremonesi, L., Aiello, B., and Lorenzon, A.R.: Correlation between morphokinetic parameters and standard morphological assessment: what can we predict from early embryo development? A time-lapse-based experiment with 2085 blastocysts. JBRA Assisted Reproduction (2020)

[3] Basile, N., Vime, P., Florensa, M., Aparicio Ruiz, B., Garcia Velasco, J. A., Remohi, J., and Meseguer, M.: The use of morphokinetics as a predictor of implantation: A multicentric study to define and validate an algorithm for embryo selection. Human Reproduction 30 (2), pp. 276-283 (2014)