

Contrastive Data Learning for Facial Pose and Illumination Normalization

Paper ID: 2284 Project Page: https://github.com/HaoRecog/pose-illumination-normalization

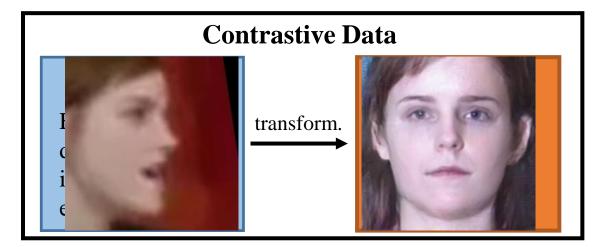
Gee-Sern Jison Hsu¹

Chia-Hao Tang¹

Svetlana Yanushkevich²

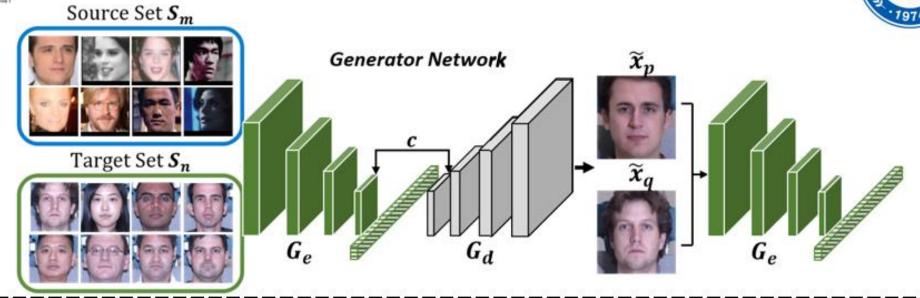
Marina L Gavrilova²

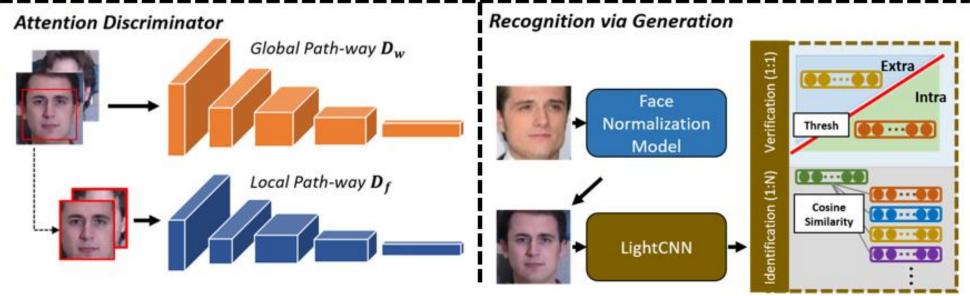
¹National Taiwan University of Science and Technology, ²University of Calgary


Problem statement

- **Motivation:** Most previous work [1, 2] primarily focused on frontal pose normalization only.
- **Task:** Learn the transformation from an arbitrary face into illumination and pose normalized face, in an unsupervised manner.

• **Key idea:** Follow the work in [2], we learn on the contrastive data (source and target), it can transform an arbitrary face into illumination and pose


normalized face.



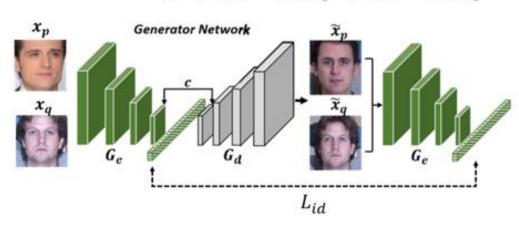
Pose and Illumination Normalization

Identity Loss

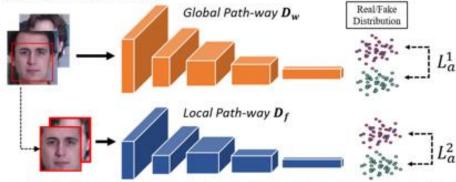
Adversarial Loss

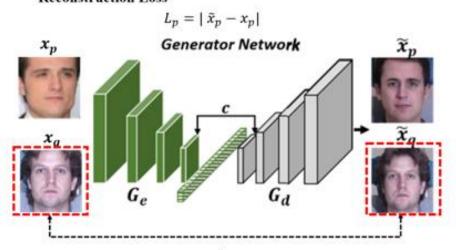
Reconstruction Loss

Symmetry Loss

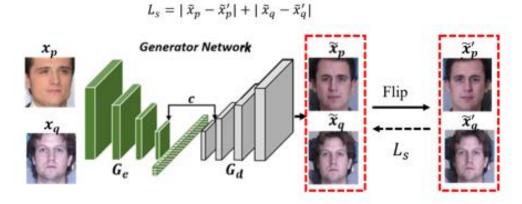


Identity Loss



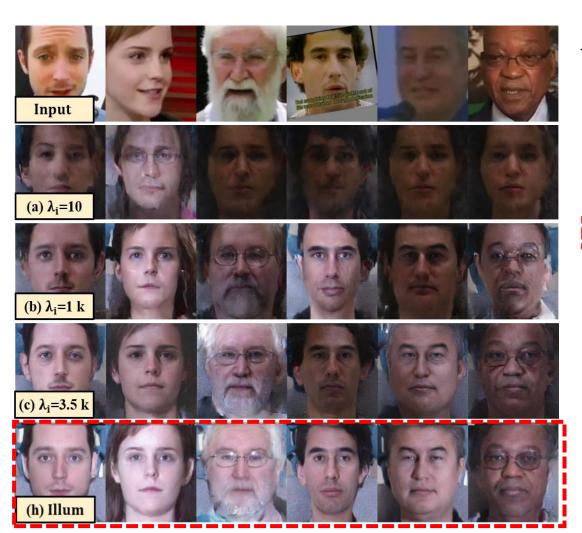

Adversarial Loss

$$L_{a} = \mathbb{E}[D_{\theta_{i}}(\tilde{x}_{q})] + \mathbb{E}[D_{\theta_{i}}(\tilde{x}_{p})] - \mathbb{E}[D_{\theta_{i}}(x_{p})] + \lambda \mathbb{E}[(\|\nabla_{\tilde{x}} D_{\theta_{i}}(\tilde{x}) - 1\|_{2})^{2}], i \in [1, 2]$$


Attention Discriminator

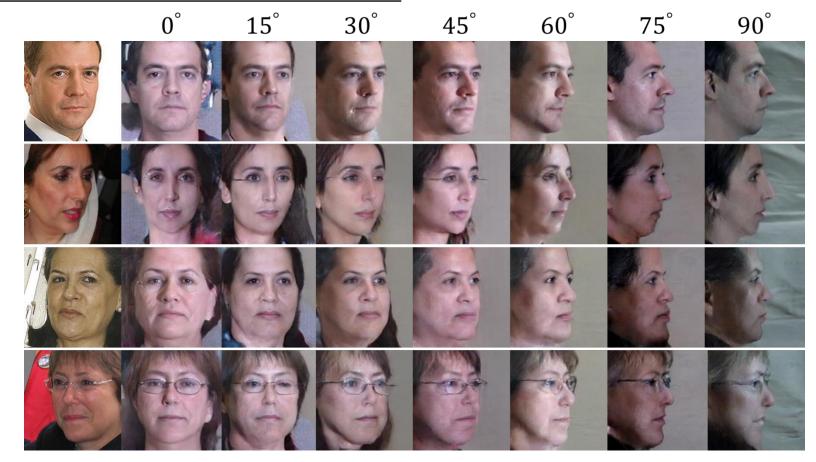
Reconstruction Loss

Symmetry Loss



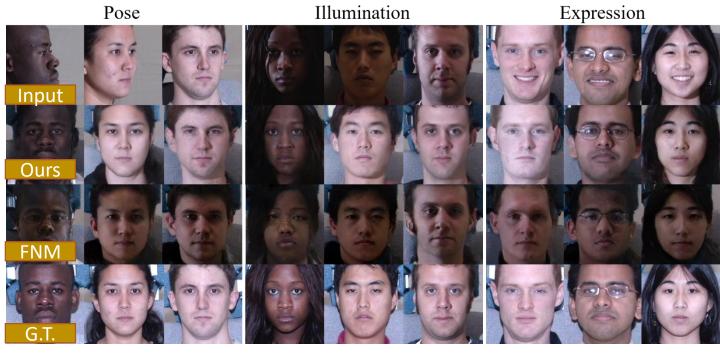
Experiments – Ablation study

The ablation study on IJB-A.


	Verif	Verification		Identification	
Method	@FAR=.01	@FAR=.001	@Rank-1	@Rank-5	
$\overline{\text{PIN }(\lambda_i = 10)}$	7.5 ± 1.5	2.8 ± 1.2	12.8 ± 0.4	28.9 ± 2.5	
PIN ($\lambda_i = 1000$)		72.8 ± 0.6	91.7 ± 2.1	95.9 ± 1.1	
PIN ($\lambda_i = 3500$)	92.6 ± 0.9	85.5 ± 1.4	95.1 ± 1.4	96.9 ± 0.5	
PIN ($\lambda_i = 5500$)	90.9 ± 0.4	80.7 ± 1.0	93.2 ± 1.7	96.8 ± 0.9	
$PIN (\lambda_a = 0)$	85.3 ± 0.7	70.1 ± 1.9	86.6 ± 1.2	92.4 ± 1.2	
PIN $(\lambda_s = 0)$	86.2 ± 1.6	78.9 ± 1.1	88.1 ± 1.0	93.9 ± 1.7	
$PIN (\lambda_p = 0)$	90.6 ± 1.4	81.3 ± 1.3	91.6 ± 1.6	94.3 ± 1.2	
PIN (Illum)	93.9 ± 0.6	87.0 ± 0.4	96.7 ± 0.9	98.3 ± 0.7	
(e) λ _a =0					
$(f) \lambda_p = 0$	100	1	36		
	MA		35		

Experiments – Ablation study

PIN (15	°)	93.3 ± 0.2	85.7±0.1	96.0±1.8 97.3±1.9
PIN (30)	°)	91.0 ± 1.6	82.6 ± 2.1	95.6+1.3 96.0+1.1
PIN_m PIN_c		94.2 ± 0.8	88.9 ± 1.0	$96.8 \pm 1.1 \ 98.3 \pm 0.9$
PIN_c		95.4 ± 1.8	90.1 ± 1.9	$97.1 \pm 0.1 \ 98.6 \pm 0.9$
PIN (75	°)	82.4 ± 0.2	63.7 ± 1.5	$89.9 \pm 0.7 \ 94.1 \pm 1.1$
PIN (90°	°)	73.2 ± 1.9	53.1 ± 1.1	$84.6 \pm 2.6 \ 93.5 \pm 1.2$


Experiments – Multi-PIE

Rank-1 recognition rates (%) across views, illuminations on Multi-PIE.

Method		30°				
FF-GAN [14]	94.6	92.5	89.7	85.2	77.2	61.2
TP-GAN [1]	99.8	99.9	98.6	98.1	92.9	75.0
DR-GAN [5]	95.0	91.3	88.0	85.8	-	-
LightCNN [26]	99.2	98.0	97.7	95.5	73.3	20.7
CAPG-GAN [17]	99.9	99.4	98.3	93.7	87.4	77.1
PIM [2]	99.3	99.0	98.5	98.1	95.0	86.5
FNM [3]	99.9	99.5	98.2	93.7	81.3	55.8
LightCNN [26]	100	100	100	95.5	73.3	20.7
PIN + LightCNN	100	100	99.8	98.9	95.2	84.2
ArcFace [13]	100	100	100	96.5	83.1	40.5
PIN + ArcFace	100	100	100	99.2	96.9	86.5

PIN generated normalized faces compared with ground truth.

Experiments – IJB-A and IJB-C

Performance comparison on IJB-A.

	Verification		Identification	
Method	@FAR=.01	@FAR=.001	@Rank-1	@Rank-5
PAM [8]	73.3 ± 1.8	55.2 ± 3.2	77.1 ± 1.6	88.7 ± 0.9
DCNN [28]	78.7 ± 4.3	_	85.2 ± 1.8	93.7 ± 1.0
FF-GAN [14]	85.2 ± 1.0	66.3 ± 3.3	90.2 ± 0.6	95.4 ± 0.5
FaceID-GAN [14]	87.6 ± 1.1	69.2 ± 2.7	-	-
DR-GAN [5]	87.2 ± 1.4	78.1 ± 3.5	92.0 ± 1.3	96.1 ± 0.7
FNM [3]	93.4 ± 0.9	83.8 ± 2.6	96.0 ± 0.5	98.6 ± 0.3
LightCNN [26]	91.2 ± 1.1	84.4 ± 0.8	92.4 ± 1.7	95.4 ± 0.8
PIN + LightCNN	95.4 ± 1.8	90.1 ± 1.9	97.1 ± 0.1	98.6 ± 0.9
ArcFace [13]	94.9 ± 1.2	90.2 ± 0.5	95.1 ± 0.6	98.1 ± 0.3
PIN + ArcFace	96.2 ± 1.2	91.5 ± 0.5	97.6 ± 0.6	98.9 ± 0.3

Performance comparison on IJB-C.

	Verification		
Method	@FAR=.01	@FAR=.001	
FaceNet [7]	32.40	20.58	
VGGFace [10]	45.60	26.18	
DR-GAN [5]	88.2	73.6	
VGGFace2 [11]	95.0	90.0	
LightCNN[26]	90.63	84.32	
PIN + LightCNN	91.49	86.56	
ArcFace[13]	95.82	91.69	
PIN + ArcFace	96.11	92.27	

Conclusion

We improve the FNM with four components:

- 1) Re-organized the contrastive data set by strictly keep the target set with frontal face with balance illumination.
- 2) Add in the symmetry loss to stable both target and source face in optimization process
- 3) Determine the weights to emphasize the contributions of different losses
- 4) Incorporation of the ArcFace as our encoder which provide more discriminative prior knowledge to the decoder.

Experiments show that PIN framework is competitive to SOTA approaches.

Thanks for Watching