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Vertex Classification Problem

å



Problem Illustration 4
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Graph: G = (V,E)
Vertex features: X : V 7→ Rd

Vertex labels: Y : V 7→ C

Training set: Vtrain ⊂ V
Xtrain = X (Vtrain)
Ytrain = Y(Vtrain)

Find Y(V/Vtrain) or X (V/Vtrain)

Community detection [PARS14, YCS16, KW17];
recommendation systems [YHC+18]; molecular
discovery/generation [YLY+18]; weakly-supervised learning
[KCL+19].



Example: Cora Dataset 5

Most recent research have chosen Cora as the benchmark datasets.

What is their assumptions for dataset like Cora?
My answer: Low-frequency assumption!



Understanding the SOTA for Vertex Classification
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Rayleigh Quotient 7

Given a symmetric Laplacian matrix L ∈ Rn×n of a graph G, the
Rayleigh quotient R(L, f) for f ∈ Rn is given as:

R(L, f) =
f>Lf

f>f
=

1

f>f

∑
uvv

(f(u)− f(v))2 (1)

1

1

1
0

0

0

Figure: R(L, f) = 1/3. f is called
“low-frequency”.
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Figure: R(L, f) = 5/3. f is called
“high-frequency”.



Rayleigh quotient for Y 8
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Figure: Rayleigh quotient of Y in benchmark datasets



Graph Low-pass Filters: Hard filter 9
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Figure: Classification accuracy by number of frequency components

The classification accuracy increases in the low-frequency regions
for the benchmark datasets. In addition, this low-frequency regions
(green boxes) are relatively noise tolerant.



Forgotten(?) Assumption 10

Two previous experiments show:

I Information is concentrated in the low-frequency regions.

I Rayleigh quotient can be used to predict the useful frequency
regions.

Assumption

In the vertex classification problem, we assume R(L, y) to be
sufficiently small. If R(L, y) is large, the performances of most
SOTA models are not guaranteed.

This is the “low-frequency” assumption. This assumption is also
made for the feature X .



Filter-then-classify 11

Most recent models can be generalized to “filter-then-classify”
approach. The proposal of SGC [WZSJ+19] and the work by
[LWL+19] support this observation.

gf(A)

X

W1

gf(A)
σ
*

*

W2

softmax

gf(A)

X

W1

k
*

softmax

gf(A)

X

W1

k
*

softmax

σ

W2

GCN SGC gfNN

Figure: Toy models.

filter

We will see that
“filter-then-classify” has a few
advantages to the feature
propagation understanding.



Advantage in noisy settings 12

GCN and other multi-layers model might overfit to noisy data.
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Advantage in decoupling functional parts (1) 13

Claim: Graph filters cannot “learn” manifolds!

Original data SGC
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Figure: Results for donuts case.



Advantage in decoupling functional parts (2) 14

We have to learn the filters, not only the neural network’s weights!

High-freq Eigenvectors (last 50)GCN (k=2)SGC (k=2)

gfNN-HighGraphSAGESGC (k=3)

Figure: Results for high frequency case

In this setting, R(L, y) ≈ 2 (maximum value).



High Frequency: Feature Shift 15
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Conclusions 16

1. Most benchmark datasets are community detection in nature,
hence the designs for SOTA Graph Neural Networks are biased
toward the low-frequency characteristics of these datasets.

2. A tool like Rayleight quotient and more flexible models like
gfNN are needed in solving real-world vertex classifications.

3. High frequency cases (or different frequency case) are
interesting because they can be used for constructing
adversarial examples for graphs.

4. Disadvantage of filter-then-classify is that it doesn’t provide
an immediate intuition for the spacial domain. Also, currently
selecting the appropriate graph filter for a problem beyond
Decision Trees and Random Forest remains an open problem.



Next steps

?



Learning Theory for Vertex Classification 18

Viewing graph simply as a filter allows several directions:

I Statistical learning analysis: Quantify model complexity,
number of samples for optimal training (somewhat similar to
the Nyquist rate in SP and CS).

I Practical models: Adaptive filters with trade-off of data
efficiency1.

1https://arxiv.org/pdf/2011.10988.pdf

https://arxiv.org/pdf/2011.10988.pdf
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Observation of models designs 22

Baseline vertex classification models such as spectral clustering
[NJW02] often use first few eigenvectors to make feature vectors
for vertices. More recent models such as Deepwalk [PARS14] or
Planetoid [YCS16] relies on embedding neighbors “close” together.

Recent neural network based models such as ChebNet [DBV16],
GCN [KW17], and GraphSAGE [HYL17] combine vertex features
with graph structure by averaging neighbors (similar to feature
propagation). Common theme: Low-frequency design!



Graph Low-pass Filters 23

Multiplying the feature vectors to ∆sym = I −D−1/2LD−1/2 is
similar to applying the 1− λ filter. Furthermore, adding loops to
the graph truncates the largest eigenvector.

Theorem 1 ([WZSJ+19])

Let A be the adjacency matrix of an undirected, weighted, simple
graph G without isolated nodes and with corresponding degree
matrix D. Let Ã = A+ γI, such that γ > 0, be the augmented
adjacency matrix with corresponding degree matrix D. Also, let λ1
and λn denote the smallest and largest eigenvalues of
∆sym = I −D−1/2AD−1/2 ; similarly, let λ̃1 and λ̃n be the
smallest and largest eigenvalues of ∆̃sym. We have that

0 = λ1 = λ̃1 < λ̃n < λn



Improving Theorem 3 24

Since [WZSJ+19] only proved for the largest eigenvalues, we do
not know the relation between λi and λ̃i for 0 < i < n.

Solution: Use the Courant–Fisher–Weyl’s min-max principle to
argue about other pairs of eigenvalues!

Theorem 2 (NTMM, 2019)

Let λi(γ) be the i-th smallest generalized eigenvalue of
(D̃, L) = (D + γI). Then, λi(γ) is a non-negative number, and
monotonically non-increasing in γ ≥ 0. Moreover, λi(γ) is strictly
monotonically decreasing if λi(0) 6= 0.



Proof by [WZSJ+19] I 25

It is trivial to see that λ1 = λ̃1 = 0:

x>∆̃symx =
∑
i

x2i −
∑
i

∑
j

ãijxixj√
(di + γ)(dj + γ)

≤ 0 (2)

Let β1 ≤ β2 ≤ . . . ≤ βn be the eigenvalues of D−1/2AD−1/2 and
α1 ≤ α2 ≤ . . . ≤ αn be the eigenvalues of D̃−1/2AD̃−1/2. We see
that β1 < 0. Choose x such that ||x|| = 1 and y = D1/2D̃−1/2x,



Proof by [WZSJ+19] II 26

see that ||y||2 =
∑

i
di

di+γ
x2i and minidi

γ+minidi
≤ ||y||2 ≤ maxidi

γ+maxidi
.

Using Rayleigh quotient to look at α1:

α1 = minx(x>D̃−1/2AD̃−1/2x) (3)

= minx(
y>D−1/2AD−1/2y

||y||2
||y||2) (4)

≥ minx(
y>D−1/2AD−1/2y

||y||2
)maxx(||y||2) (5)

= β1maxx||y||2 (6)

≥ maxidi
γ + maxidi

(7)



Proof by [WZSJ+19] III 27

Note that ∆̃sym = I − γD̃−1 − D̃−1/2AD̃−1/2. Using the result
above we have:

λ̃n = maxxx
>(I − γD̃−1 − D̃−1/2AD̃−1/2)x (8)

≤ 1−minxγx
>D̃−1x−minxx

>D̃−1/2AD̃−1/2x (9)

= 1− γ

γ + maxidi
− α1 (10)

< 1− β1 = λn (11)



My proof 28

Since the generalized eigenvalues of (D + γI, L) are the
eigenvalues of a positive semidefinite matrix
(D + γI)1/2L(D + γI)1/2, these are non-negative real numbers.
To obtain the shrinking result, we use the Courant–Fisher–Weyl’s
min-max principle [Bha13, Corollary III. 1.2]: For any 0 ≤ γ1 < γ2,

λi(γ2) = min
H:subspace,dim(H)=i

max
x∈H,x 6=0

x>Lx

x>(D + γ2I)x
(12)

≤ min
H:subspace,dim(H)=i

max
x∈H,x 6=0

x>Lx

x>(D + γ1I)x
(13)

= λi(γ1). (14)

Here, the second inequality follows because
x>(D + γ1)x < x>(D + γ2)x for all x 6= 0 Hence, the inequality is
strict if x>Lx 6= 0, i.e., λi(γ1) 6= 0.



Dataset details 29

Table: Real-world benchmark datasets and synthetic datasets for vertex
classification

Dataset Nodes Edges Features (X) (µX , σX) Classes Train/Val/Test
Cora 2,708 5,278 1,433 (0.0007, 0.0071) 7 140/500/1,000
Citeseer 3,327 4,732 3,703 (0.0003, 0.0029) 6 120/500/1,000
Pubmed 19,717 44,338 500 (0.0019, 0.0087) 3 60/500/1,000
Reddit 231,443 11,606,919 602 - 41 151,708/23,699/55,334
PPI 56,944 818,716 50 - 121 44,906/6,514/5,524
Two Circles 4,000 10,000 2 - 2 80/80/3,840
BA-High 200 2000 50 (0,1) 2 10/10/180



High Frequency Artificial Data 30

Generate G Find maximal indep. set Assign random signal

Figure: Artificial BA with high-freq labels.

In this setting, R(L, y) ≈ 2 (maximum value).



Classification results 31

Table: Average test accuracy on original train/val/test splits (50 times)

Cora Citeseer Pubmed Reddit PPI 2Circles BA-High
DGI 83.1± 0.2 72.1± 0.1 80.1± 0.2 94.5± 0.3 99.2± 0.1 85.2± 0.6 54.6± 1.8
GCN 80.0± 1.8 69.6± 1.1 79.3± 1.3 - - 84.9± 0.8 58.9± 2.2
SGC 77.6± 2.2 65.6± 0.1 78.4± 1.1 94.9± 0.2 89.0± 0.1 53.5± 1.4 55.5± 1.3
gfNN-low 82.3± 0.2 71.8± 0.1 79.2± 0.2 94.8± 0.2 89.3± 0.5 85.6± 0.8 55.4± 2.3
gfNN-high 24.2± 1.9 22.5± 2.2 43.6± 1.3 10.5± 2.6 86.6± 0.1 48.3± 3.5 96.2± 1.0
gf-Ensemble 82.9± 1.2 72.3± 1.2 81.5± 1.3 94.8± 0.2 88.2± 0.4 83.5± 0.3 95.7± 1.2



Compute Rayleigh quotient for Y 32

We use the symmetric normalized Laplacian
L = D−1/2(D −A)D−1/2 and create a one-hot vector to indicate
the label on each vertex.
For example, suppose we have a simple graph G = (V,E), |V | = n,
|E| = m, Y : V 7→ C, and |C| = 3. We construct the one-hot
matrix: Y ∈ 0, 1n×|C|. We denote Yi ∈ 0, 1n as the column of the
binary matrix Y . The Rayleight quotient for label i is given by:

R(L, Yi) =
Y >i LYi
Y >i Yi

=
1

Y >i Yi

∑
uvv

(f(u)− f(v))2



Graph Low-pass Filters: Hard filter 33

1. Compute the graph Fourier basis U from L
2. Add Gaussian noise to the input features: X ← X +N (0, σ2)

for σ = {0, 0.01, 0.05}
3. Compute the first k-frequency component:
X̂k = U [: k]>D1/2X

4. Reconstruct the features: X̃k = D−1/2U [: k]X̂k
5. Train and report test accuracy of a 2-layers neural net on the

reconstructed features X̃k


	Outline
	Vertex Classification Problem
	Problem Illustration
	Assumption on Benchmark Datasets

	Understanding the SOTA for Vertex Classification
	Frequency Analysis Perspective
	Filter Then Classify

	Next steps
	On Vertex Classification

	Appendix

