



# Convolutional Feature Transfer via Camera-Specific Discriminative Pooling for Person Re-Identification

**Tetsu Matsukawa** Einoshin Suzuki Kyushu University, JAPAN

## Background

#### Practical issue

- Lack of training person IDs
- Require GPU for fine-tuning

#### CNN-feature transfer





## Approach

Existing features are less transferable to different camera/datasets due to spatial bias





front / rear views



side views



DB 2

broad bounding box



### Weighted Local AvgP



## Camera-specific pooling



Zero-padding to feature matrix



## Weight map learning: Problem formulation

Cam ID

- Given a training data  $\{F_i, p_i, c_i\}_{i=1}^N$
- Optimize sum of distances of K-weight map pairs  $\delta^2_{\pmb{W}}(i,j) = \sum_{k=1}^K \delta^2_{\pmb{w}_k}(i,j)$ 
  - Random projection distance

$$\begin{split} \underline{\delta^2_{\boldsymbol{w}_k}(i,j)} &= \|\boldsymbol{R}^T \boldsymbol{x}_{k,i} - \boldsymbol{R}^T \boldsymbol{x}_{k,j}\|_2^2 \\ &= \|\boldsymbol{R}^T \boldsymbol{F}_i \boldsymbol{w}_k - \boldsymbol{R}^T \boldsymbol{F}_j \boldsymbol{w}_k\|_2^2 \\ &= \|\boldsymbol{Q}_i \boldsymbol{w}_k - \boldsymbol{Q}_j \boldsymbol{w}_k\|_2^2 \end{split}$$



## Weight map learning: Optimization

• Maximum margin with orthogonal constraint

$$\begin{split} \max_{\boldsymbol{W}} \quad J(\boldsymbol{W}) &= \operatorname{Tr} \left[ \boldsymbol{W}^T \boldsymbol{\Sigma}_D \boldsymbol{W} \right] - \operatorname{Tr} \left[ \boldsymbol{W}^T \boldsymbol{\Sigma}_S \boldsymbol{W} \right] \\ & \text{avg. distance of} \\ & \text{avg. distance of} \\ & \text{avg. distance of} \\ & \text{same person} \end{split}$$

The solution is given by eigen decomposition of  $~~\Sigma_{\mathcal{D}}~-~\Sigma_{\mathcal{S}}~$ 

### Distance for re-id



### Comparison



| SOTA             |                     | Rank-1 rates |       |      | S: Supervised<br>U: Unsupervised<br>DG: Domain Generalization |        |
|------------------|---------------------|--------------|-------|------|---------------------------------------------------------------|--------|
|                  |                     | Туре         | VIPeR | GRID | PRID                                                          | CUHK01 |
|                  | CMDL[PAMI18]        | S            | 66.4  | 30.9 | 52.0                                                          | 78.2   |
|                  | HGD[PAMI20]         | S            | 52.8  | 28.2 | -                                                             | -      |
| CNN<br>features  | - Synthesis[ECCV18] | U            | 43.0  | -    | -                                                             | 54.9   |
|                  | One-shot [CVPR17]   | U+S          | 34.3  | -    | -                                                             | 45.6   |
|                  | CRAFT [PAMI18]      | S            | 50.3  | 22.4 | -                                                             | -      |
|                  | - C-DPCF [ours]     | S            | 76.3  | 34.8 | 79.4                                                          | 89.1   |
| Mobilenet<br>-V2 | DIMN [CVPR19]       | DG           | 51.2  | 29.3 | -                                                             | -      |
|                  | DN [BMVC19]         | DG           | 58.8  | 39.7 | 73.6                                                          | -      |
|                  | DN + ours           | DG+S         | 73.9  | 42.3 | 84.1                                                          | -      |
|                  |                     |              |       |      |                                                               |        |

## Analysis

#### Random projection

abs

|     | PUR   | Training time |              |
|-----|-------|---------------|--------------|
| w/o | 90.5% | 1684.4 sec    |              |
| w/  | 91.3% | 49.0 sec      | 34.4x faster |
|     |       |               |              |







- C-DPCF improves PCB(source) with 30 persons
- Camera-specific weight maps always outperforms common weight maps