

Context for Object Detection via Lightweight Global and Mid-level Representations

Mesut Erhan Unal and Adriana Kovashka University of Pittsburgh

Motivation

- Context is an important mechanism that makes visual recognition easier for humans [Palmer, 1975; Biederman et al., 1982], hence it is natural to also model context in machine perception.
- State-of-the-art two-stage object detection frameworks (e.g. Faster R-CNN) perform classification and localization tasks for each region in isolation, ignoring what is in the rest of the image.

Motivation

- Prior work tries to model context in a manner which is expensive from both computational and human labeling point of view. For instance;
 - [Chen et al., 2018] requires densely-labeled datasets such as Visual Genome and ADE.
 - [Liu et al., 2018] employs recurrent units for belief-propagation.
- We propose a novel approach for context-aware object detection by employing a lightweight belief-propagation mechanism which operates on visual representations of regions and the scene, as well as the spatial relationships between regions.
- We also experiment with capturing similarities between regions at a semantic level by modeling class co-occurrence and linguistic similarity between class names.

Our work builds on top of Structure Inference Net (SIN), proposed in [Liu et al., 2018]. In SIN, a message passed from region *i* to *j* is weighted by a constant $e_{i \rightarrow j}$, such that:

 $e_{i \to j} = ReLU(W_g R_{i \to j}) * tanh(W_v[f^i, f^j])$

Spatial relationship

Visual relationship

SIN, a message passed from region i to j is weighted by a constant $e_{i \rightarrow i}$, such that:

 The first set of models we experiment with employ SIN's graph structure inference module as a post-processing step (after Faster R-CNN) to utilize semantic cues using class predictions.

Our work builds on top of Structure Inference Net (SIN), proposed in [Liu et al., 2018]. In

SIN, a message passed from region i to j is weighted by a constant $e_{i \rightarrow i}$, such that:

- The first set of models we experiment with employ SIN's graph structure inference module as a post-processing step (after Faster R-CNN) to utilize semantic cues using class predictions.
- Our second set of models replaces SIN's recurrent units with a lightweight mechanism for belief-propagation on region graph.

Our work builds on top of Structure Inference Net (SIN), proposed in [Liu et al., 2018]. In

ulletof guesses to capture the semantic relationship between regions.

Base: Models the co-occurrence of object categories based on the backbone detector's best set

- of guesses to capture the semantic relationship between regions.
- new representation for the next round.

Base: Models the co-occurrence of object categories based on the backbone detector's best set

Scene: Updates scene representation at the end of each message-passing round, then uses this

- of guesses to capture the semantic relationship between regions.
- new representation for the next round.
- **Attr1:** Models mid-level semantic relationships between regions using object class attributes. Having built an attribute dictionary, this model learns a class-class similarity matrix over a latent attribute space and uses the highest class predictions to retrieve attribute similarity of regions.

Base: Models the co-occurrence of object categories based on the backbone detector's best set

Scene: Updates scene representation at the end of each message-passing round, then uses this

C: Number of classes

- of guesses to capture the semantic relationship between regions.
- new representation for the next round.
- **Attr1:** Models mid-level semantic relationships between regions using object class attributes. Having built an attribute dictionary, this model learns a class-class similarity matrix over a latent attribute space and uses the highest class predictions to retrieve attribute similarity of regions.
- **Attr2:** Similar to Attr1 but first maps attributes to regions using their predicted class scores. After this mapping, it learns a region-region similarity matrix over a latent attribute space and retrieves attribute similarity of regions.

Base: Models the co-occurrence of object categories based on the backbone detector's best set

Scene: Updates scene representation at the end of each message-passing round, then uses this

K: Number of regions

lacksquareon their visual (Visual GCN) and spatial (Geo GCN) relationships.

GeoVis: Employs two single-layer GCNs for message-passing between regions based

- GeoVis: Employs two single-layer GCNs for message-passing between regions based on their visual (Visual GCN) and spatial (Geo GCN) relationships.
- GeoVis-S: Builds on GeoVis, and adds scene as a first-class participant in Visual GCN.

- on their visual (Visual GCN) and spatial (Geo GCN) relationships.
- classes is measured on a word embedding space.

GeoVis: Employs two single-layer GCNs for message-passing between regions based

GeoVis-S: Builds on GeoVis, and adds scene as a first-class participant in Visual GCN.

GeoVis-Ling: Uses a weighted loss formulation which penalizes misclassification of semantically similar categories more than dissimilar ones. Semantic similarity between

Prediction Bus

- on their visual (Visual GCN) and spatial (Geo GCN) relationships.
- classes is measured on a word embedding space.

GeoVis: Employs two single-layer GCNs for message-passing between regions based

GeoVis-S: Builds on GeoVis, and adds scene as a first-class participant in Visual GCN.

GeoVis-Ling: Uses a weighted loss formulation which penalizes misclassification of semantically similar categories more than dissimilar ones. Semantic similarity between

Prediction Dog

Experiments (Datasets)

- PASCAL VOC
 - **Training:** VOC 2007 trainval and VOC 2012 trainval combined •
 - **Evaluation:** VOC 2007 test

- MS COCO
 - Training: COCO 2014 train •
 - Evaluation: COCO 2014 minival and COCO 2019 test-dev (server evaluation)

Experiments (Baselines)

- **Faster R-CNN** [Ren et al., 2015] No explicit context modeling
- Structure Inference Net [Liu et al., 2018] Models spatial and visual relationships jointly

All models uses the same CNN backbone, VGG16, pre-trained on ImageNet.

rate, and the learning rate decaying strategy.

- All models were trained for the same number of steps, with the same initial learning

• All models outperform Faster R-CNN

	FRCNN	SIN	Scene	Attr1	Attr2	GeoVis-S	GeoVis-Lin
aeroplane	0.767	0.780	0.771	0.770	0.766	0.760	0.767
bicycle	0.793	0.798	0.796	0.789	0.789	0.795	0.788
bird	0.733	0.765	0.731	0.742	0.750	0.745	0.757
boat	0.660	0.676	0.668	0.670	0.670	0.629	0.639
bottle	0.611	0.625	0.596	0.600	0.592	0.613	0.608
bus	0.853	0.851	0.849	0.852	0.843	0.849	0.846
car	0.865	0.865	0.868	0.866	0.856	0.861	0.861
cat	0.881	0.870	0.882	0.885	0.883	0.881	0.876
chair	0.580	0.615	0.574	0.584	0.565	0.588	0.575
cow	0.831	0.838	0.837	0.819	0.841	0.870	0.852
diningtable	0.660	0.691	0.721	0.694	0.693	0.677	0.708
dog	0.848	0.846	0.854	0.852	0.850	0.854	0.846
horse	0.859	0.862	0.863	0.877	0.871	0.866	0.812
motorbike	0.774	0.788	0.776	0.768	0.768	0.755	0.758
person	0.782	0.786	0.785	0.787	0.787	0.781	0.778
pottedplant	0.418	0.509	0.443	0.429	0.446	0.482	0.442
sheep	0.756	$\overline{0.771}$	0.769	0.752	0.756	0.760	0.781
sofa	0.700	0.756	0.732	0.734	0.732	0.720	0.722
train	0.821	$\overline{0.842}$	0.839	0.818	0.842	0.821	0.825
tvmonitor	0.746	0.768	0.762	0.766	0.762	0.765	0.758
average	0.747	0.765	0.756	0.753	0.753	0.754	0.750
animals	0.818	0.825	0.823	0.821	0.825	0.829	0.821

- All models outperform Faster R-CNN
- Modeling scene as a first-class participant improves the overall performance (GeoVis mAP: %74.9)

	FRCNN	SIN	Scene	Attr1	Attr2	GeoVis-S	GeoVis-Lin
aeroplane	0.767	0.780	0.771	0.770	0.766	0.760	0.767
bicycle	0.793	<u>0.798</u>	0.796	0.789	0.789	0.795	0.788
bird	0.733	<u>0.765</u>	0.731	0.742	0.750	0.745	0.757
boat	0.660	<u>0.676</u>	0.668	0.670	0.670	0.629	0.639
bottle	0.611	0.625	0.596	0.600	0.592	0.613	0.608
bus	<u>0.853</u>	0.851	0.849	0.852	0.843	0.849	0.846
car	0.865	0.865	<u>0.868</u>	0.866	0.856	0.861	0.861
cat	0.881	0.870	0.882	<u>0.885</u>	0.883	0.881	0.876
chair	0.580	<u>0.615</u>	0.574	0.584	0.565	0.588	0.575
cow	0.831	0.838	0.837	0.819	0.841	<u>0.870</u>	0.852
diningtable	0.660	0.691	<u>0.721</u>	0.694	0.693	0.677	0.708
dog	0.848	0.846	<u>0.854</u>	0.852	0.850	<u>0.854</u>	0.846
horse	0.859	0.862	0.863	<u>0.877</u>	0.871	0.866	0.812
motorbike	0.774	<u>0.788</u>	0.776	0.768	0.768	0.755	0.758
person	0.782	0.786	0.785	<u>0.787</u>	<u>0.787</u>	0.781	0.778
pottedplant	0.418	<u>0.509</u>	0.443	0.429	0.446	0.482	0.442
sheep	0.756	0.771	0.769	0.752	0.756	0.760	<u>0.781</u>
sofa	0.700	<u>0.756</u>	0.732	0.734	0.732	0.720	0.722
train	0.821	0.842	0.839	0.818	<u>0.842</u>	0.821	0.825
tvmonitor	0.746	<u>0.768</u>	0.762	0.766	0.762	0.765	0.758
average	0.747	<u>0.765</u>	0.756	0.753	0.753	0.754	0.750
animals	0.818	0.825	0.823	0.821	0.825	0.829	0.821

- All models outperform Faster R-CNN
- Modeling scene as a first-class participant improves the overall performance (GeoVis mAP: %74.9)
- Utilizing mid-level semantic cues and semantic-aware loss works better for some categories but does not improve overall performance

	FRCNN	SIN	Scene	Attr1	Attr2	GeoVis-S	GeoVis-Lin
aeroplane	0.767	0.780	0.771	0.770	0.766	0.760	0.767
bicycle	0.793	0.798	0.796	0.789	0.789	0.795	0.788
bird	0.733	0.765	0.731	0.742	0.750	0.745	0.757
boat	0.660	0.676	0.668	0.670	0.670	0.629	0.639
bottle	0.611	0.625	0.596	0.600	0.592	0.613	0.608
bus	0.853	0.851	0.849	0.852	0.843	0.849	0.846
car	0.865	0.865	0.868	0.866	0.856	0.861	0.861
cat	0.881	0.870	0.882	<u>0.885</u>	0.883	0.881	0.876
chair	0.580	<u>0.615</u>	0.574	0.584	0.565	0.588	0.575
cow	0.831	0.838	0.837	0.819	0.841	<u>0.870</u>	0.852
diningtable	0.660	0.691	<u>0.721</u>	0.694	0.693	0.677	0.708
dog	0.848	0.846	0.854	0.852	0.850	<u>0.854</u>	0.846
horse	0.859	0.862	0.863	0.877	0.871	0.866	0.812
motorbike	0.774	<u>0.788</u>	0.776	0.768	0.768	0.755	0.758
person	0.782	0.786	0.785	<u>0.787</u>	<u>0.787</u>	0.781	0.778
pottedplant	0.418	<u>0.509</u>	0.443	0.429	0.446	0.482	0.442
sheep	0.756	0.771	0.769	0.752	0.756	0.760	<u>0.781</u>
sofa	0.700	<u>0.756</u>	0.732	0.734	0.732	0.720	0.722
train	0.821	0.842	0.839	0.818	<u>0.842</u>	0.821	0.825
tvmonitor	0.746	<u>0.768</u>	0.762	0.766	0.762	0.765	0.758
average	0.747	<u>0.765</u>	0.756	0.753	0.753	0.754	0.750
animals	0.818	0.825	0.823	0.821	0.825	0.829	0.821

- All models outperform Faster R-CNN
- Modeling scene as a first-class participant improves the overall performance (GeoVis mAP: %74.9)
- Utilizing mid-level semantic cues and semantic-aware loss works better for some categories but does not improve overall performance
- GeoVis-S achieves the best performance on animal category

	FRCNN	SIN	Scene	Attr1	Attr2	GeoVis-S	GeoVis-Lin
aeroplane	0.767	0.780	0.771	0.770	0.766	0.760	0.767
bicycle	0.793	0.798	0.796	0.789	0.789	0.795	0.788
bird	0.733	0.765	0.731	0.742	0.750	0.745	0.757
boat	0.660	0.676	0.668	0.670	0.670	0.629	0.639
bottle	0.611	0.625	0.596	0.600	0.592	0.613	0.608
bus	0.853	0.851	0.849	0.852	0.843	0.849	0.846
car	0.865	0.865	0.868	0.866	0.856	0.861	0.861
cat	0.881	0.870	0.882	0.885	0.883	0.881	0.876
chair	0.580	0.615	0.574	0.584	0.565	0.588	0.575
cow	0.831	0.838	0.837	0.819	0.841	<u>0.870</u>	0.852
diningtable	0.660	0.691	<u>0.721</u>	0.694	0.693	0.677	0.708
dog	0.848	0.846	<u>0.854</u>	0.852	0.850	<u>0.854</u>	0.846
horse	0.859	0.862	0.863	0.877	0.871	0.866	0.812
motorbike	0.774	<u>0.788</u>	0.776	0.768	0.768	0.755	0.758
person	0.782	0.786	0.785	<u>0.787</u>	<u>0.787</u>	0.781	0.778
pottedplant	0.418	<u>0.509</u>	0.443	0.429	0.446	0.482	0.442
sheep	0.756	0.771	0.769	0.752	0.756	0.760	<u>0.781</u>
sofa	0.700	<u>0.756</u>	0.732	0.734	0.732	0.720	0.722
train	0.821	0.842	0.839	0.818	<u>0.842</u>	0.821	0.825
tvmonitor	0.746	<u>0.768</u>	0.762	0.766	0.762	0.765	0.758
average	0.747	<u>0.765</u>	0.756	0.753	0.753	0.754	0.750
animals	0.818	0.825	0.823	0.821	0.825	0.829	0.821

Results (COCO)

 On COCO 2014 minival, GeoVis-S is the best performing model on 4 of the 11 supercategories while Faster R-CNN be for only 1 supercategory

•	-	

	n	
		U
-		J

COCO 2014 minival					
Test setting / Method	FRCNN	SIN	GeoVis-S		
AP @[IoU=0.50:0.95 — area= all]	0.207	0.213	0.209		
AP @[IoU=0.50 — area= all]	0.401	<u>0.415</u>	0.408		
AP @[IoU=0.75 — area= all]	0.196	<u>0.197</u>	0.193		
AP @[IoU=0.50:0.95 — area= small]	0.050	<u>0.055</u>	0.051		
AP @[IoU=0.50:0.95 — area=medium]	0.232	0.242	0.237		
AP @[IoU=0.50:0.95 — area= large]	0.342	0.346	0.345		
Accessories AP @ IoU=[0.50,0.95]	0.079	0.084	0.084		
Food AP @ IoU=[0.50,0.95]	0.161	0.166	0.169		
Kitchenware AP @ IoU=[0.50,0.95]	0.116	0.118	0.120		
Furniture AP @ IoU=[0.50,0.95]	0.216	0.225	0.216		
Electronics AP @ IoU=[0.50,0.95]	0.245	0.263	0.255		
Appliance AP @ IoU=[0.50,0.95]	0.228	0.252	0.215		
Indoor objects AP @ IoU=[0.50,0.95]	0.133	0.137	<u>0.138</u>		
Animal AP @ IoU=[0.50,0.95]	<u>0.374</u>	0.371	0.373		
Vehicle AP @ IoU=[0.50,0.95]	0.262	<u>0.265</u>	0.262		
Sports AP @ IoU=[0.50,0.95]	0.145	<u>0.149</u>	0.146		
Outdoor objects AP @ IoU=[0.50,0.95]	0.270	0.271	0.261		
COCO 2019 tes	t-dev				
Test setting / Method	FRCNN	SIN	GeoVis-S		
AP @[IoU=0.50:0.95 — area= all]	0.207	0.215	0.211		
AP @[IoU=0.50 — area= all]	0.403	0.423	0.411		
AP @[IoU=0.75 — area= all]	0.194	<u>0.198</u>	<u>0.198</u>		

Results (COCO)

- On COCO 2014 minival, GeoVis-S is the best performing model on 4 of the 11 supercategories while Faster R-CNN be for only 1 supercategory
- On COCO 2019 test-dev, GeoVis-S achieves the same performance as mo costly SIN, when required IoU threshold 0.75
- This result indicates that our model is good at localization but may be suffering from poor classification / region proposal

	COCO 2014 minival								
9	Test setting / Method	FRCNN	SIN	GeoVis-S					
	AP @[IoU=0.50:0.95 — area= all]	0.207	0.213	0.209					
	AP $@$ [IoU=0.50 — area= all]	0.401	0.415	0.408					
	AP @[IoU=0.75 — area= all]	0.196	<u>0.197</u>	0.193					
lina	AP @[IoU=0.50:0.95 — area= small]	0.050	<u>0.055</u>	0.051					
ang sing	AP @[IoU=0.50:0.95 — area=medium]	0.232	0.242	0.237					
	AP @[IoU=0.50:0.95 — area= large]	0.342	<u>0.346</u>	0.345					
	Accessories AP @ IoU=[0.50,0.95]	0.079	0.084	0.084					
	Food AP @ IoU=[0.50,0.95]	0.161	0.166	<u>0.169</u>					
	Kitchenware AP @ IoU=[0.50,0.95]	0.116	0.118	<u>0.120</u>					
	Furniture AP @ IoU=[0.50,0.95]	0.216	0.225	0.216					
	Electronics AP @ IoU=[0.50,0.95]	0.245	<u>0.263</u>	0.255					
	Appliance AP @ IoU=[0.50,0.95]	0.228	0.252	0.215					
	Indoor objects AP @ IoU=[0.50,0.95]	0.133	0.137	<u>0.138</u>					
)re	Animal AP @ IoU=[0.50,0.95]	0.374	0.371	0.373					
	Vehicle AP @ IoU=[0.50,0.95]	0.262	0.265	0.262					
1 ' -	Sports AP @ IoU=[0.50,0.95]	0.145	<u>0.149</u>	0.146					
IS IS	Outdoor objects AP @ IoU=[0.50,0.95]	0.270	<u>0.271</u>	0.261					
	COCO 2019 test-dev								
	Test setting / Method	FRCNN	SIN	GeoVis-S					
	AP @[IoU=0.50:0.95 — area= all]	0.207	0.215	0.211					
	AP @[IoU=0.50 — area= all]	0.403	0.423	0.411					
	AP @[IoU=0.75 — area= all]	0.194	<u>0.198</u>	<u>0.198</u>					
ood									

Comparison of Model Parameters

All three models are identical up to FC6, and their R-CNN heads operate on \mathbb{R}^{4096} so we can compare the number of parameters in between for a fair and dataset-agnostic comparison

SIN: Graph structure inference module GeoVis-S: VisualGCN and GeoGCN

Comparison of Model Parameters

- All three models are identical up to FC6, and their R-CNN heads operate on \mathbb{R}^{4096} so we can compare the number of parameters in between for a fair and dataset-agnostic comparison
- SIN uses almost **12x** more parameters than Faster R-CNN for context modeling

SIN: Graph structure inference module GeoVis-S: VisualGCN and GeoGCN

Method	FRCNN	SIN	GeoVis-S (Ours)
# Params	16,781,312	201,359,372	33,570,829

Comparison of Model Parameters

- All three models are identical up to FC6, and their R-CNN heads operate on \mathbb{R}^{4096} so we can compare the number of parameters in between for a fair and dataset-agnostic comparison
- SIN uses almost **12x** more parameters than Faster R-CNN for context modeling
- SIN uses almost **6x** more parameters than GeoVis-S for context modeling
- Our model is more feasible to deploy on resour \bullet constrained devices and more suitable for para training as it will require less bandwidth

SIN: Graph structure inference module GeoVis-S: VisualGCN and GeoGCN

ce-	Method	FRCNN	SIN	GeoVis-S (Ours)
allel	# Params	16,781,312	201,359,372	33,570,829

Qualitative Results

• As SIN passes messages between regions based on a single graphical regions, it fails in utilizing context for rare object placements.

representation wherein edges encode joint spatio-visual relationships between

Conclusion and Future Work

- the source of context.
- CNN, yet brings significant improvement in performance. It also performs competitively against more costly SIN.
- settings.

We propose a lightweight belief-propagation mechanism for context-aware object detection. We also experiment with several semantic cues from different levels as

Our proposed approach adds negligible amount of extra parameters on Faster R-

We will apply our findings on weakly-supervised detection and video detection

Thank you for your attention!