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Motivation
• Context is an important mechanism that makes visual 

recognition easier for humans [Palmer, 1975; Biederman et 
al., 1982], hence it is natural to also model context in 
machine perception.


• State-of-the-art two-stage object detection frameworks 
(e.g. Faster R-CNN) perform classification and localization 
tasks for each region in isolation, ignoring what is in the 
rest of the image.



Motivation
• Prior work tries to model context in a manner which is expensive 

from both computational and human labeling point of view. For 
instance;

‣ [Chen et al., 2018] requires densely-labeled datasets such as Visual 

Genome and ADE.

‣ [Liu et al., 2018] employs recurrent units for belief-propagation.


• We propose a novel approach for context-aware object detection 
by employing a lightweight belief-propagation mechanism which 
operates on visual representations of regions and the scene, as 
well as the spatial relationships between regions.


• We also experiment with capturing similarities between regions at 
a semantic level by modeling class co-occurrence and linguistic 
similarity between class names.



Approach
Our work builds on top of Structure Inference Net (SIN), proposed in [Liu et al., 2018]. In 
SIN, a message passed from region  to  is weighted by a constant , such that: 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• The first set of models we experiment with employ SIN's graph structure inference 
module as a post-processing step (after Faster R-CNN) to utilize semantic cues using 
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Approach
Our work builds on top of Structure Inference Net (SIN), proposed in [Liu et al., 2018]. In 
SIN, a message passed from region  to  is weighted by a constant , such that: 
 

• The first set of models we experiment with employ SIN's graph structure inference 
module as a post-processing step (after Faster R-CNN) to utilize semantic cues using 
class predictions.


• Our second set of models replaces SIN's recurrent units with a lightweight mechanism 
for belief-propagation on region graph.
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Approach
• Base: Models the co-occurrence of object categories based on the backbone detector’s best set 

of guesses to capture the semantic relationship between regions.


• Scene: Updates scene representation at the end of each message-passing round, then uses this 
new representation for the next round.

• Attr1: Models mid-level semantic relationships between regions 
using object class attributes. Having built an attribute 
dictionary, this model learns a class-class similarity matrix over 
a latent attribute space and uses the highest class predictions 
to retrieve attribute similarity of regions.


• Attr2: Similar to Attr1 but first maps attributes to regions using 
their predicted class scores. After this mapping, it learns a 
region-region similarity matrix over a latent attribute space and 
retrieves attribute similarity of regions.

K

K

K: Number of regions



Approach

• GeoVis: Employs two single-layer GCNs for message-passing between regions based 
on their visual (Visual GCN) and spatial (Geo GCN) relationships.
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• GeoVis: Employs two single-layer GCNs for message-passing between regions based 
on their visual (Visual GCN) and spatial (Geo GCN) relationships.


• GeoVis-S: Builds on GeoVis, and adds scene as a first-class participant in Visual GCN. 

• GeoVis-Ling: Uses a weighted loss formulation which penalizes misclassification of 
semantically similar categories more than dissimilar ones. Semantic similarity between 
classes is measured on a word embedding space.
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• GeoVis: Employs two single-layer GCNs for message-passing between regions based 
on their visual (Visual GCN) and spatial (Geo GCN) relationships.


• GeoVis-S: Builds on GeoVis, and adds scene as a first-class participant in Visual GCN. 

• GeoVis-Ling: Uses a weighted loss formulation which penalizes misclassification of 
semantically similar categories more than dissimilar ones. Semantic similarity between 
classes is measured on a word embedding space.
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Experiments (Datasets)
• PASCAL VOC 

• Training: VOC 2007 trainval and VOC 2012 trainval combined


• Evaluation: VOC 2007 test


• MS COCO 

• Training: COCO 2014 train


• Evaluation: COCO 2014 minival and COCO 2019 test-dev (server evaluation)



Experiments (Baselines)
• Faster R-CNN [Ren et al., 2015] 

No explicit context modeling


• Structure Inference Net [Liu et al., 2018] 
Models spatial and visual relationships jointly 

All models uses the same CNN backbone, VGG16, pre-trained on ImageNet. 


All models were trained for the same number of steps, with the same initial learning 
rate, and the learning rate decaying strategy. 
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Results (PASCAL)
• All models outperform Faster R-CNN


• Modeling scene as a first-class 
participant improves the overall 
performance (GeoVis mAP: %74.9)


• Utilizing mid-level semantic cues and 
semantic-aware loss works better for 
some categories but does not improve 
overall performance


• GeoVis-S achieves the best performance 
on animal category
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Results (COCO)
• On COCO 2014 minival, GeoVis-S is the 

best performing model on 4 of the 11 
supercategories while Faster R-CNN being 
for only 1 supercategory


• On COCO 2019 test-dev, GeoVis-S 
achieves the same performance as more 
costly SIN, when required IoU threshold is 
0.75


• This result indicates that our model is good 
at localization but may be suffering from 
poor classification / region proposal



Comparison of Model Parameters
• All three models are identical up to FC6, and their R-

CNN heads operate on  so we can compare 
the number of parameters in between for a fair and 
dataset-agnostic comparison
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Comparison of Model Parameters
• All three models are identical up to FC6, and their R-

CNN heads operate on  so we can compare 
the number of parameters in between for a fair and 
dataset-agnostic comparison


• SIN uses almost 12x more parameters than Faster 
R-CNN for context modeling


• SIN uses almost 6x more parameters than GeoVis-S 
for context modeling


• Our model is more feasible to deploy on resource-
constrained devices and more suitable for parallel 
training as it will require less bandwidth
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Qualitative Results
• As SIN passes messages between regions based on a single graphical 

representation wherein edges encode joint spatio-visual relationships between 
regions, it fails in utilizing context for rare object placements.
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Conclusion and Future Work
• We propose a lightweight belief-propagation mechanism for context-aware object 

detection. We also experiment with several semantic cues from different levels as 
the source of context.


• Our proposed approach adds negligible amount of extra parameters on Faster R-
CNN, yet brings significant improvement in performance. It also performs 
competitively against more costly SIN.


• We will apply our findings on weakly-supervised detection and video detection 
settings.



Thank you for your attention!


