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Problem Formlation:

Given a guide set G = {P? UN7},
containing a small number of images
let's say n with common foreground {P?},
and random number of outliers { N},

from a large corpus of images named as

co-seg set C = {P°UN‘},

* determine images which has foreground
specified by the guide set.

* and extracts that foreground from each
image.
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**Please note that red boxes are outliers



Guided Co-segmentation of Multiple Images using Few-shot Learning

b direct training leads to overfitting
Class Agnostic Episodic Training Scheme:

Find any larger dataset Dyqs. develpoed for co-segmentation even if Dygrget N Dpase = @

NS

Randomly sample a episode consists of a guide set G = {PY UNY} = {(af

y1), ..., (x,yl)} containing
n positive samples {P?} and k-n outliers {N?} and a co-seg set C = {(x5, y{),
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Calculate common object prototype from the set §
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Vz§ € C calculate individual feature similarity with the common object prototype and predict mask ¥;
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Calculate Loss, — Z Z y;log P(g5(a, b)) + A x reg and backpropagate
J=1 (a,b)




Directed Variational Cross-encoder Network
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Directed Variational Cross-encoder Network
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DVICE: Directed Variational Inference Cross Encoder
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Experimental Results and Ablation Studies
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