Deep Photo Relighting by Integrating Both 2D and 3D Lighting Information

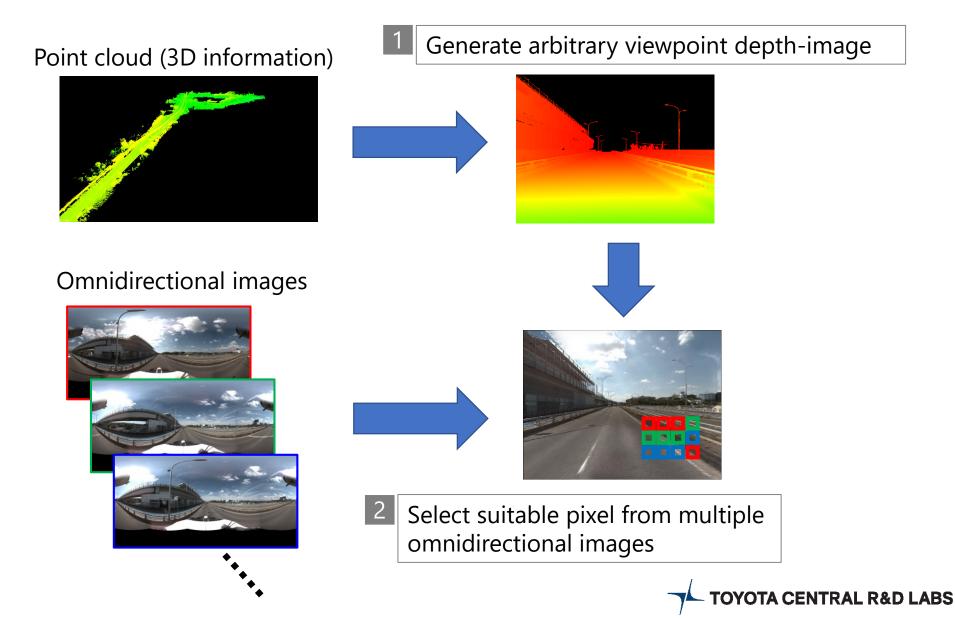
> Takashi Machida and Satoru Nakanishi Toyota Central R&D Labs. Inc.,

Motivation

- The needs for virtual assessment (VA) has been increasing in the field of autonomous driving systems.
- VA can design and evaluate a system/algorithm with virtually generated data.
- Using virtually generated data reduces the workload to collect data from actual driving.
- To generate images, there are two major problems.
- Geometrical Problem Caused by changing camera position.
- Optical Problem
 Caused by changing the environment.

* : Deep Photo Relighting

F-VIR (Free Viewpoint Image Rendering)[1]



Problems and Contributions

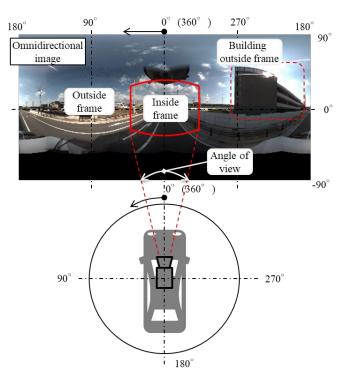
Problems

- The generated image can be reproduced incorrectly because not all the factors are supported.
- Shadow from outside the frame cannot be considered.

Contributions

Proposing a practical framework for

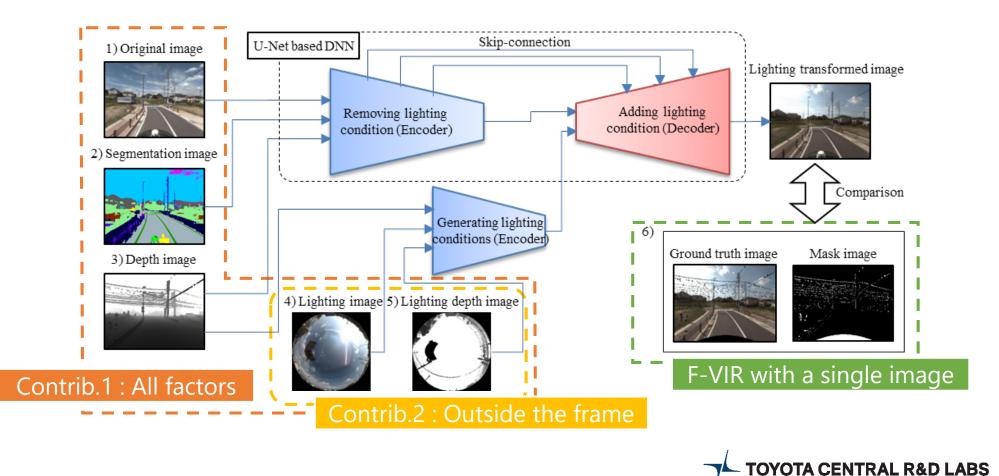
- 1. Considering all lighting condition factors to correctly transform the lighting conditions of images.
- 2. Considering the influence of lighting condition not only inside the frame but also outside the frame.



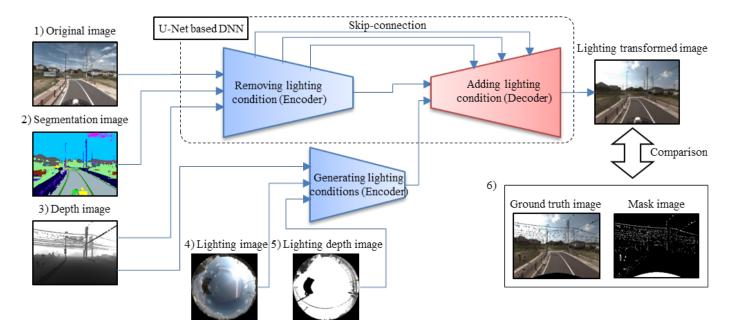
Framework

□U-Net based DNN

- Two-step process : removing and adding lighting conditions.
- Integrating 2D and 3D lighting information.



2D and 3D input images



Factors of con	structing image	Input image	
Viewpoint		Original image	
Object material		Original image Segmentation image	
Object geometry		Depth image	
Lighting	Lighting color/intensity	Lighting image Lighting depth image	
condition	Obstructing object shape	Lighting depth image	
	Projection surface shape	Depth image	

2D and 3D lighting information

- Using the omnidirectional image, the convolution process cannot extract the image feature suitably at the left and right sides.
 - \rightarrow Converting zenith format

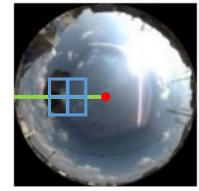
Omnidirectional image

Conv. 2x2

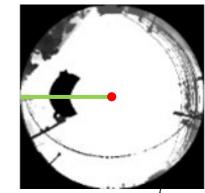
kernel

Omnidirectional depth image 5)

4) Lighting image



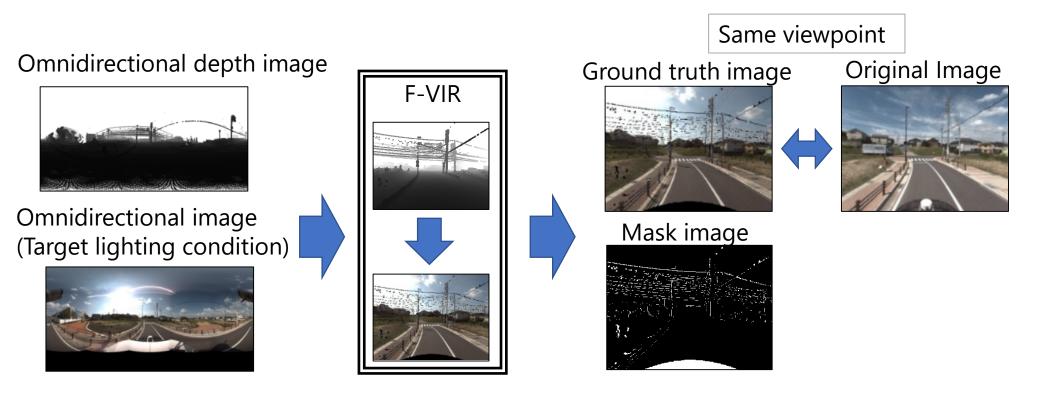
5) Lighting depth image



TOYOTA CENTRAL R&D LABS

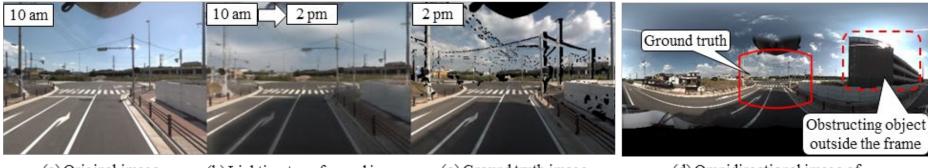
F-VIR with a single image

- For the learning process, we need images from the same viewpoint with different lighting conditions. However, it's difficult to collect these images during actual driving.
 - \rightarrow Using F-VIR with a single image



Result 1

• DPR can reproduce the shadow due to the obstructing object outside the frame.



(a) Original image

(b) Lighting transformed image

(c) Ground truth image

(d) Omnidirectional image of ground truth at 2 pm

TOYOTA CENTRAL R&D LABS

Result 2 : Comparison with CycleGAN[2]

• DPR has few artifacts than CycleGAN.

• DPR is superior to CycleGAN on five indicators.

	L1	PSNR	SSIM	LPIPS	FID	mloU
DPR	3.68	25.19	0.88	0.088	25.97	0.67
CycleGAN	7.30	20.60	0.80	0.11	19.98	0.60

The FID of DPR is greater than that of CycleGAN because the lighting transformed image is smoothed by the loss function which is based on the average of error in the image.

OYOTA CENTRAL R&D LABS

References

- [1] Oko et al. "Evaluation of image processing algorithms on vehicle safety system based on free-viewpoint image rendering," *IEEE Intelligent Vehicle Symposium*, 2014
- [2] Zhu et al. "Unpaired image-to-image translation using cycleconsistent adversarial networks," *ICCV*, 2017

