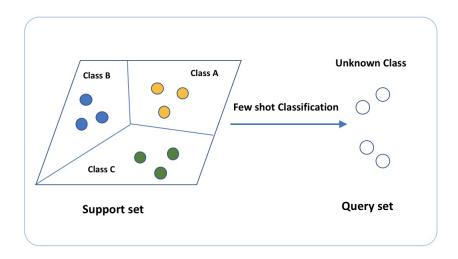


Augmented Bi-path Network for Few-shot Learning


Baoming Yan^{1,2*,} Chen Zhou^{1*}, Bo Zhao³, Kan Guo², Jiang Yang², Xiaobo Li², Ming Zhang¹ and Yizhou Wang¹

¹ Peking University, ² Alibaba Group, ³ The University of Edinburgh (* Indicates equal contribution)

Introduction

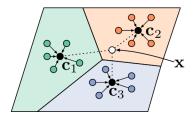
Few-shot learning problem definition:

Aims to learn from few labeled training data, train a good classification model with few labeled data. E.g. fine-grained categories or medical data

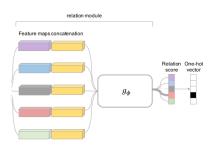
N-way-K-shot: N classes with K labeled samples

Typical solution: meta-learning based methods

Learn meta-knowledge from sampled FSL tasks

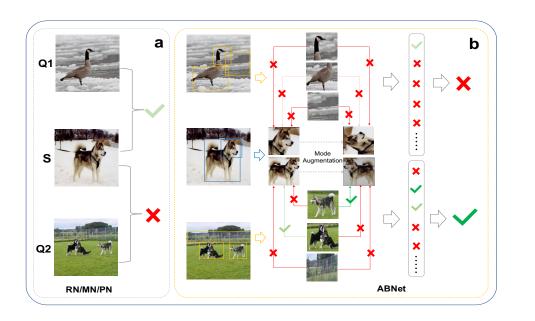

Introduction

Differ in the design of the classifier for basic tasks


Feature embedding Comparison module Scores Class with max score

Previous methods:

Porotype Network



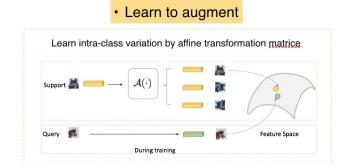
Relation Network

The neural network has difficulty in learning or comparing the **local features** of two images

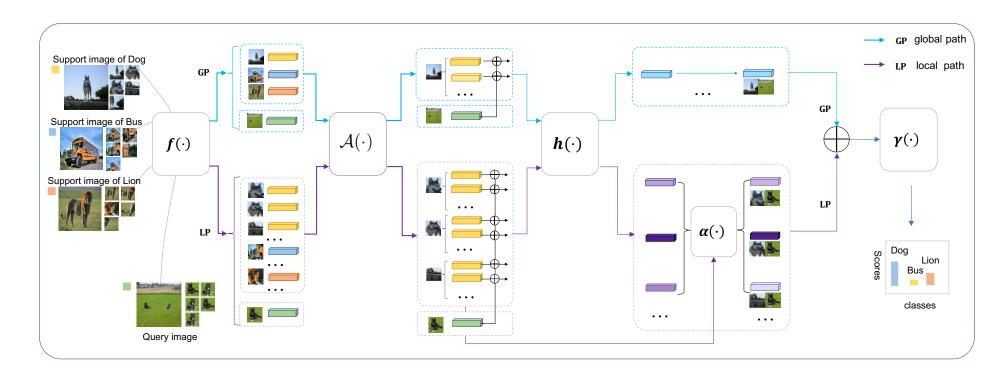
Motivation

a. Image-level comparison may cause serious mis-classification b. Introduction of salient patch makes the comparison precise.

• Introduce salient patches


MBD salient detection

Input


Selective search

Using unsupervised methods

Selective search and MBD

Methods

Salient Patch extraction

$$S(r_i) = \Pi(r_i) \cdot \frac{1}{K} \sum_{j=0}^{K} v(p_j)$$

$$v(p_j) = \min_{\pi \in \mathbb{S}} [\max_{t=0}^T I(\pi(t)) - \min_{t=0}^T I(\pi(t))]$$

Feature Embedding

Learn to augment

$$\begin{bmatrix} A_{11}, & A_{12}, & A_{13}, & A_{14} \\ A_{21}, & A_{22}, & A_{23}, & A_{24} \\ A_{31}, & A_{32}, & A_{33}, & A_{34} \\ 0, & 0, & 0, & 1 \end{bmatrix}$$

Learn to compare

- a) Generating Similarity Maps
- b) Learning to Re-weight:
- c) Learning to Merge

Methods

Loss Function:

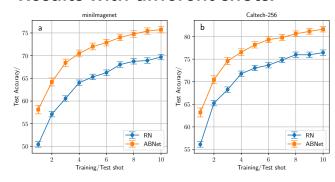
Classification Loss:
$$\mathcal{L}_{cls} = \frac{1}{B \times C} \sum_{i=1}^{B} \sum_{j=1}^{C} (P(i,j) - \mathbb{I}(y_i == y_j))^2$$

Attention Loss:
$$\mathcal{L}_{att} = \frac{S_{att}}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} |\alpha(i,j)|$$

Augmentation Loss:
$$\mathcal{L}_{aug} = \frac{S_{aug}}{B \times C} \sum_{i=1}^{B} \sum_{j=1}^{C} \sum_{k=1}^{K} (f(I_q) - f_k(I_s))^2 \mathbb{I}(y_i == y_j)$$

Total Loss:
$$\mathcal{L} = \mathcal{L}_{cls} + \lambda_{att} \cdot \mathcal{L}_{att} + \lambda_{aug} \cdot \mathcal{L}_{aug}$$

Experiments

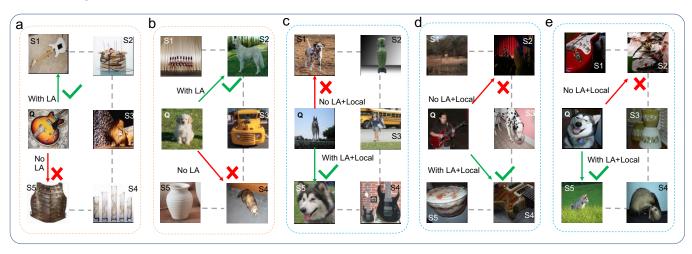

Compare with SOTA:

Method		miniImageNet		Caltech-256		tieredImageNet	
		5way1shot	5way5shot	5way1shot	5way5shot	5way1shot	5way5shot
MatchingNet [16]	NIPS'16	43.56±0.84	55.31±0.73	45.59±0.77	54.61 ± 0.73	54.02	70.11
MetaLSTM [21]	ICLR'17	43.44 ± 0.77	60.60 ± 0.71	-	-	-	-
MAML [20]	ICML'17	48.70 ± 0.84	55.31 ± 0.73	48.09 ± 0.83	57.45 ± 0.84	51.67 ± 1.81	70.30 ± 0.08
MetaNet [17]	ICML'17	49.21 ± 0.96	-	-	-	-	-
ProtoNet [12]	NIPS'17	49.42 ± 0.87	68.20 ± 0.70	-	-	54.28 ± 0.67	71.42 ± 0.61
RelationNet [13]	CVPR'18	50.44 ± 0.82	65.32 ± 0.77	56.12 ± 0.94	73.04 ± 0.72	54.48 ± 0.93	71.32 ± 0.78
CTM [42]	CVPR'19	41.62	58.77	_	_	_	-
Spot&Learn [37]	CVPR'19	51.03 ± 0.78	67.96 ± 0.71	-	-	-	-
MetaOptNet [43]	CVPR'19	52.87 ± 0.57	68.76 ± 0.48	-	-	54.71 ± 0.67	71.79 ± 0.59
ABNet		58.12±0.94	72.02±0.75	63.20±0.99	78.42±0.69	62.10±0.96	75.11±0.78

Resnet Backbone:

Method		Backbone	miniImageNet		
			5way1shot	5way5shot	
RelationNet [13] CTM [42] MetaOptNet [43]	CVPR'18 CVPR'19 CVPR'19	ResNet-18 ResNet-18 ResNet-12	58.21 62.05±0.55 62.64±0.61	74.29 78.63±0.06 78.63±0.46	
ABNet		ResNet-18	63.15±0.63	78.85±0.56	

Results with different shots:


Ablation Study

Quantitative comparison of four variants of our methods:

- Baseline: fixed global features
- Baseline + LA (Learn to Augment)
- Baseline + LA + SP (Salient Patch)
- Baseline + LA + SP + LR (Learn to Re-weight)

Model	miniImageNet			
Model	5way1shot	5way5shot		
Baseline	52.44 ± 0.91	66.50 ± 0.77		
Baseline+LA	54.27 ± 0.91	68.02 ± 0.77		
Baseline+LA+SP	55.76 ± 0.89	69.70 ± 0.72		
Baseline+LA+SP+LR	58.12 ± 0.94	72.02 ± 0.75		

Visualization Comparison:

Augmented Bi-path Network for Few-shot Learning

Baoming Yan^{1,2*,} Chen Zhou^{1*}, Bo Zhao³, Kan Guo², Jiang Yang², Xiaobo Li², Ming Zhang¹ and Yizhou Wang¹

¹ Peking University, ² Alibaba Group, ³ The University of Edinburgh (* Indicates equal contribution)

Poster #2318 @PS T3.10