CASNet: Common Attribute Support Network for image instance and panoptic segmentation

> Xiaolong Liu, Yuqing Hou, Anbang Yao, Yurong Chen and Keqiang Li Intel Labs China School of Vehicle, Tsinghua University, Beijing, China

Hello!

I am Xiaolong Liu

Intel Labs China (ILC) && Tsinghua University, Beijing China

xiaolong.liu@intel.com

CASNet

- Biologic vision can recognize an object from inference.
- For example, human can infer a vehicle only from part of the whole view considering most vehicles have attributes in common, such as tires, wheels, wind shield screens and so on.
- As of other objects in image, they also have attributes in common.
- Same instance with same bounding box, geometry, weight or other centers.

CASNet

Common Attribute Support Network

- Simple philosophy
- Work in fully convolutional way
- One-stage
- Non-overlap
- panoptic segmentation can be realized.
- High precision on par with Mask-RCNN
- Correct the bounding boxes
- one step forward from semantic to instance segmentation

CASNet

- backbone,
- Semantic head,
- Common attribute head,
- box probability head.

Post processing

- Choose probability over a threshold from box probability head.
- Common attribution head calculates every pixels' bounding box and centers
- NMS operation, the primary seed boxes will be got.
- Then each pixel's bounding box will give a IOU ratio with all the seed boxes, the most prominent one is the support result.

Experiments

 Cityscapes dataset,
 5000 fine-annotated split into 2975, 500 and 1525 images for training, validation and testing
 Cityscapes consists of 8 and 11 classes for things and stuff.

- 24 epochs and dropping learning rate by factor of 10 at 18 and 22 epochs.
- HRNet batch size 16, use 8
 GPUs with batch size 8.

How well is the prediction of common attributes

Instance segmentation results

Method	mask AP	AP_{50}	mask AP(val)	$AP_{50}(val)$	what	AP	AP_50
SGN[28]	0.250	0.449	0.292			0.500	0.705
Mask R-CNN R50[22]	0.262	0.499	0.315		person	0.506	0.725
SegNet[28]	0.295	0.556			rider	0.663	0.778
PANet[fine-only][28]	0.318	0.571	0.365		car	0.572	0.793
SAIS[3]	17.4	36.7			truck	0 560	0.603
Pixel Encoding[3]	8.9	21.1				0.500	0.005
pixelwise [3]	20.0	38.8			bus	0.708	0.773
AdaptIS(R50)[33]	-	-	0.323		train	0.635	0.645
AdaptIS(R101)[53]	-	-	0.339		motorcycle	0.458	0.627
UPSNet(R50)[-	-	0.339		bicycle	0.488	0 705
Ours(joint training)	0.2527	0.4780	0.328	0.566	bicycic	0.400	0.705
Ours(separated training)			0.363	0.599	average	0.574	0.706

Panoptic segmentation results

Models	PQ	SQ	RQ	PQ^{Th}	PQ^{St}	mIoU	AP
CRF + PSPNet [24]	53.8	-	-	42.5	62.1	71.6	28.6
MR-CNN-PSP	58.0	79.2	71.8	52.3	62.2	75.2	32.8
TASCNet[23]	55.9	-	-	50.5	59.8	-	-
UPSNet-M-COCO[61.8	81.3	74.8	57.6	64.8	79.2	39.0
Panoptic FPN[21]	61.2	80.9	74.4	54.0	66.4	80.9	36.4
DeeperLab ^[42] Xception-71	56.5	-	-	-	-	-	-
AdaptIS X101 [33]	62.0	-	-	64.4	58.7	79.2	36.3
Seamless ^[29]	60.3	-	-	-	-	77.5	33.6
UTIPS[25]	61.4	81.1	74.7	54.7	66.3	79.5	33.7
MS Net(joint)	59.0	81.0	71.5	47.8	67.2		32.8
MS Net(separate)	66.1	83.3	78.4	53.6	75.2		35.8

Category	All	Things	Stuff
PQ	0.848	0.673	0.974
SQ	0.946	0.907	0.974
RQ	0.891	0.742	1.00

Result for visualization

Thanks!

Any questions?

You can find me at xiaolong.liu@intel.com