



# **Progressive Cluster Purification for Unsupervised Feature Learning**

Yifei Zhang<sup>1,2\*</sup>, Chang Liu<sup>3\*</sup>, Yu Zhou<sup>1+</sup>, Wei Wang<sup>1,2</sup>, Weiping Wang<sup>1</sup> and Qixiang Ye<sup>3+</sup> <sup>1</sup>Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China <sup>2</sup>School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China <sup>3</sup>University of Chinese Academy of Sciences, Beijing, China <sup>\*</sup>Equal contribution, <sup>+</sup>Corresponding authors



- Goal: Training CNNs with unlabeled dataset.
- Feature representation of 'immediate' (convolutional) layers
- Low dimension embedding feature representation
- Application:
- Pre-trained feature as initialization
- ➢ kNN classification, Image retrieval, clustering and so on





□ How can we find **positive samples** for contrastive learning in unlabeled dataset?

$$P(i|v) = \frac{exp(v_i^T v/\tau)}{\sum_{j=1}^n exp(v_j^T v/\tau)}$$





□ Instance based methods ignore inter-image information;

**Clustering based methods** exist class-inconsistent samples (noise);

□ We need more **reliable positive samples**.



## **Overview**



PCP consists three components, including <u>Progressive Clustering</u>, <u>Cluster Purification</u> and <u>Feature Learning</u>.





- IR can learn class discriminative feature representation with solely instance-level supervision.
- We go one more step to infer that deep models can extract the underlying class information under different grain-level supervision <u>from instance-wise to class-wise</u>.
- As the total of samples N is tremendous, we implement a linear declining strategy on its logarithm to decide the number of clusters.

$$lg(N_t) = (1 - \frac{t}{T})lg(N)$$



- To further make the cluster more reliable and stable to optimize the feature learning under supervision of clear pseudo-labels with less noise, we design a <u>Cluster Purification</u> mechanism which consists of <u>unreliable sample filtering</u> and <u>unstable sample filtering</u>.
- Based on the observation that samples near cluster centroids share higher apparent similarity, thus they are more likely to belong to the same class.
- We discard the samples far away from the centroids and temporarily regard each one as a distinct class in the subsequent learning procedure.



- Easily distinguished samples are likely to be consistently assigned to the same cluster at different iterations of clustering.
- Inspired by this, we propose a voting function which utilizes the previous clustering results to quantitatively estimate the class consistency of samples.

$$V(v_i(t), v_{i_c}(t)) = \sum_{k=0}^n \alpha^k \cdot \delta(C(v_i(t-k)), C(v_{i_c}(t-k))))$$



□ The probability of an input x being recognized as i-th example is shown in left.

□ We develop our **instance-wise supervision** loss and **cluster-wise supervision** loss.

$$P(i|v) = \frac{exp(v_i^T v/\tau)}{\sum_{j=1}^n exp(v_j^T v/\tau)} \longrightarrow \left\{ \begin{array}{c} L_{instance}^t = -\sum_{i \in \mathcal{N}^s(t)} \log(P(i|v_i(t))) \\ \\ \\ L_{cluster}^t = -\sum_{c=1}^{N_t} \sum_{i,j \in \mathcal{S}_c^s(t)} \log(P(i|v_j(t))) \end{array} \right\} \longrightarrow L_{pcp}^t = L_{instance}^t + L_{cluster}^t$$

## **Overview**



### **Pipeline of PCP**

Progressive Clustering → Cluster Purification
→ Feature Learning → Progressive Clustering
→ .....



Algorithm 1 Progressive Cluster Purification. **Input:** An imagery dataset X without labels; **Output:** CNN model  $f_{\theta}$  with parameters  $\theta$ ; 1: Preset embedding feature dimension D, training epochs T, cluster number  $N_{t_0}$  for stopping declining; 2: for epoch t = 1 to T do Get the number of clusters  $N_t = max(N_t, N_{to})$  during 3: the process of **PC**, Eq.(1); Obtain D-dimensional feature space  $\mathcal{V}(t)$  by CNN 4: model,  $v(t) = f_{\theta_t}(x);$ Implement k-means clustering algorithm to get  $\cup_c S_c(t)$ 5: with  $N_t$  clusters; for each cluster c = 1 to  $N_t$  do 6: Split  $S_c(t)$  into class consistent set  $S_c^r(t)$  and noise 7: set  $\mathcal{N}_{c}^{r}(t)$  by  $\mathbf{CP}_{r}$ ; Update class consistent set as  $S_c^s(t)$  and noise set 8: as  $\mathcal{N}_{c}^{s}(t)$  by **CP**<sub>s</sub>, Eq.(2); Calculate objective loss  $L_{pcp}^t$  (Eq.(6)) according to the 9: union of set,  $\cup_c \mathcal{S}_c^s(t)$  and  $\cup_c \mathcal{N}_c^s(t)$ ; Feature learning by gradient back-propagation and 10: updating model weights; 11: return  $f_{\theta}$ .

## Experiments



## • Experiment Setting

### Dataset

Cifar10, Cifar100, ImageNet100, CUB200, PASCAL VOC

### Evaluation Metrics

kNN, Linear Classification, Detection

## Experiments



### **Components Analysis**

TABLE I: Effects of the components in our approach with kNN classification accuracy.

| DC [2]       | PC           | $CP_r$       | $CP_s$       | Acc  |
|--------------|--------------|--------------|--------------|------|
| $\checkmark$ | -            | -            | -            | 73.6 |
| $\checkmark$ | $\checkmark$ | -            | -            | 76.9 |
| $\checkmark$ | $\checkmark$ | $\checkmark$ | -            | 78.9 |
| $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 81.6 |

TABLE II: Evaluation of  $CP_r$  and  $CP_s$  under different filtering ratio.

| $\gamma$      | 0    | 0.3  | 0.5  | 0.7  | 0.9  | 0.95 | 0.99 |
|---------------|------|------|------|------|------|------|------|
| $CP_r$        | 76.9 | 77.7 | 78.9 | 79.8 | 81.4 | 81.6 | 81.7 |
| $CP_r + CP_s$ | 80.3 | 81.5 | 81.6 | 81.3 | 81.1 | 80.9 | 80.6 |

TABLE III: Performance under different cluster numbers. \* denotes with warm-up.

| N <sub>c</sub> | 10k               | 5k   | 3k   | 1k   | 100  | 10   | 5    |
|----------------|-------------------|------|------|------|------|------|------|
| DC [2]         | 82.9              | 83.0 | 82.1 | 80.6 | 73.6 | 62.0 | 56.9 |
| PCP            | 81.7              | 81.6 | 81.8 | 82.3 | 81.6 | 82.0 | 81.8 |
| PCP*           | <mark>84.1</mark> | 84.4 | 84.3 | 84.7 | 83.9 | 83.1 | 83.2 |

Y. Zhang, C. Liu, Y. Zhou, W. Wang, W. Wang and Q. Ye, Progressive Cluster Purification for Unsupervised Feature Learning, 2020.

Experiments

### Curriculum Learning

TABLE IV: Comparison of AND and PCP (w or w/o warm-up) under different training rounds (kNN accuracy). \* denotes with warm-up. N denotes neighborhood size.

| Round             | 0    | 1    | 2    | 3    | 4    |
|-------------------|------|------|------|------|------|
| AND [14] (N = 1)  | 80.0 | 83.9 | 85.0 | 85.9 | 86.3 |
| AND [14] (N = 5)  | 80.0 | 83.8 | 85.0 | 85.6 | 85.8 |
| AND [14] (N = 10) | 80.0 | 83.8 | 84.9 | 85.1 | 85.1 |
| AND [14] (N = 20) | 80.0 | 83.3 | 84.3 | 84.6 | 84.6 |
| PCP (Ours)        | 82.3 | 84.8 | 85.3 | 86.0 | 86.0 |
| PCP* (Ours)       | 84.7 | 86.4 | 86.7 | 87.0 | 87.3 |



Fig. 4: Visualization of features extracted by AND and PCP, which clearly shows that the features learned by PCP steadily focus on objects. \* denotes with warm up.



TABLE V: Comparison of classification accuracy (*k*NN) on CIFAR10. F-S denotes fully supervised. \* denotes the performance produced by our implementation. <sup>+</sup> denotes 5 rounds training. The compared results of IR/IS/AND are directly transcribed from their references.

| Model | Random | F-S*     | DC* [2] | IR [28]          | IS [30] |
|-------|--------|----------|---------|------------------|---------|
| Acc   | 32.1   | 93.1     | 80.6    | 80.8             | 83.6    |
| Model | Random | AND [14] | PCP     | AND <sup>+</sup> | PCP+    |
| Acc   | 32.1   | 84.2     | 84.7    | 86.3             | 87.3    |

TABLE VII: Comparison with MoCo [11] on ImageNet subset IN-100 with AlexNet by performing linear classifier(LC) on the features from conv5, and kNN from FC.

| Classifier       | kNN (FC) | LC (conv5) |
|------------------|----------|------------|
| MoCo [11]        | 50.1     | 55.4       |
| <b>PCP(Ours)</b> | 50.7     | 56.9       |

TABLE VI: Evaluation on CIFAR10 and CIFAR100 with AlexNet by performing linear classifier on the features from conv5, and kNNfrom FC. F-S denotes fully supervised. \* denotes our rerunning. AND in our implementation has two rounds (one-off) while PCP with one round.

| Classifier        | Weighted $kNN(FC)$ |          | Linear Clas | sifier (conv5) |
|-------------------|--------------------|----------|-------------|----------------|
| Dataset           | CIFAR10            | CIFAR100 | CIFAR10     | CIFAR100       |
| DC* [2]           | 70.3               | 27.4     | 77.1        | 44.0           |
| IR* [28]          | 68.1               | 39.6     | 76.6        | 49.5           |
| IS* [30]          | 76.4               | 46.3     | 78.7        | 51.2           |
| AND* [14]         | 76.1               | 44.2     | 79.2        | 52.8           |
| <b>PCP</b> (Ours) | 77.1               | 48.4     | 79.9        | 53.0           |
| F-S               | 91.9               | 69.7     | 91.8        | 71.0           |

Y. Zhang, C. Liu, Y. Zhou, W. Wang, W. Wang and Q. Ye, Progressive Cluster Purification for Unsupervised Feature Learning, 2020.

## Experiments

Comparison

Image Classification





### Comparison

### Fine-grained dataset and initialization for Object Detection

TABLE VIII: Comparison of fine-grained classification performance. \* denotes our rerunning. PCP is implemented with one round.

| Model | Random* | IR [28] | DC* [2] | AND [14] | PCP (Ours) |
|-------|---------|---------|---------|----------|------------|
| Acc   | 2.6     | 11.6    | 13.1    | 14.1     | 16.9       |

TABLE IX: Comparison of object detection performance. AND in our implementation has two rounds (one-off) while PCP with one round.

| Model | Random | DC [2] | IR [28] | AND [14] | PCP (Ours) | F-S  |
|-------|--------|--------|---------|----------|------------|------|
| mAP   | 0.5    | 27.8   | 30.6    | 36.9     | 39.8       | 46.1 |

## **Experiments**



### **Class conceptualization**



(a) DC





(b) AND



Top 1 (%) Top 1 (%) Plane(19.9) Plane(19.4) Cat|Car(14.8) Car(41.6) Plane Bird(24.6) Bird(63.8) Car Deer(24.5) Cat(42.9) Bird Deer(32.1) Deer(58.2) Cat Deer Dog(49.5) Dog(23.9) Dog Frog(82.2) Frog(23.0) Frog Frog(14.9) Horse(23.8) Horse Ship Ship(82.5) Horse(23.3) Truck Truck(68.7) Truck(92.1) (no Ship, confusing in Cat and Car) (easy to distinguish) (f) PCP (e) AND

Fig. 5: Visualization of 2-dimensional t-SNE distributions of the feature space (a-c) and its class statistics under k-means (k=10) clustering results (d-f) by DC, AND and PCP. (Best viewed in color)

## Conclusion



To alleviate the impact of noise samples, we designed

- The Progressive Clustering (PC) strategy to gradually expand the cluster size consistently with the growth of the model representation capability.
- The Cluster Purification (CP) mechanism to reduce unreliable and unstable noise samples in each cluster to a significant extent.
- With warmup training strategy, PCP avoids network focusing on low-level feature for early clustering.

Extensive experiments on classification and detection benchmarks demonstrated that the proposed PCP approach has improved the classical clustering method and provided a fresh insight into the unsupervised learning problem.



## Thank you !