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Introduction

 Under-sampled reconstruction in resting-state fMRI holds the
potential to enable higher spatial resolution in brain R-fMRI

without increasing scan duration.

* We propose a novel convolutional neural network (CNN)
framework to reconstruct R-fMRI from k-t under-sampled data.

e The CNN framework for reconstruction comprises of two jointly-
learned multilayer CNN components for
i. explicitly filling in missing k-space data, using acquired data in
frequency-temporal neighborhoods, and
ii. image quality enhancement in the spatiotemporal domain.

 Results show improvements over all previously know methods, in
the connectivity maps for three cerebral functional networks.




Overview

e Subsampling scheme subsamples
both in time and k-space; an
acquisition noise is also added.

e The CNN architecture, with end-to-
end learning, has stage

1. that uses a CNN to fill in
missing k-space data using
acquired data in k-t-
neighborhoods,

2. that includes a Fourier inverse
to transform the data to the
spatial domain, and

3. that uses a CNN learned for
image quality enhancement in
the spatiotemporal domain.
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Loss Functions

* Mean Squared Loss (p = 2)
e Robust Loss (p = 0.5)

| arg min (1 — A)ZIIX" WM e, ) + 2 ZZIIX%‘ — F o o)}
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* Bayesian Loss
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Model Variations

Model Layers (© & ¥) Loss
S-CNN 2 Mean squared
D-CNN 4 Mean squared
RD-CNN 4 Robust
BD-CNN 4 Bayesian




Baselines

Model
RA-DICT

WAVE
LOWRANK

BDMRI-T

Description

A robust data-adaptive sparse
dictionary model

A sparse wavelet model on the
spatiotemporal fMRI signal

Low-rank model on the joint k-space
and temporal domain

Adaption of a CNN-based dynamic-
MRI reconstruction method



Results on R-fMRI Data from Human !!!-!L

Connectome Project
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Quantitative Results on Brain R-fMRI. Comparison of all methods, through mSSIM boxplots
over 50 evaluation-set subjects and all functional-networks.



Results on R-fMRI Data from Human ICPR

Connectome Project

Qualitative Results on Brain R-fMRI

Dorsal Attentive Network (DAN) estimated from

(a) original data; from fitted models using

(b) BD-CNN: mSSIM 0.93,

(c) RD-CNN: mSSIM 0.92,

(d) D-CNN: mSSIM 0.93,

(e) S-CNN: mSSIM 0.92,

(f) BDMRI-T: mSSIM 0:85,

(g) RA-DICT: mSSIM 0:91,

(h) WAVE: mSSIM 0:85,

(i) LOWRANK: mSSIM 0:74; and from

(j) 8X lower spatial resolution of (a): mSSIM
0:82.
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Insensitivity to ull

mSSIM Boxplots over 50 evaluation set subjects and all functional networks, for
BD-CNN learned from 5 different training and validation sets.
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Performance for ICPR
Different Values of Free-Parameter A4
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 Trend: Performance deteriorates significantlyas 4 - 1~.

* Average mSSIM (and standard deviation for all functional networks
and evaluation subjects) for A € [0,0.75] is 0.90 (0.03), and for A =

1is 0.88 (0.03); demonstrates utility of third stage of our
architecture.

We set A = 0.5 because it leads to reduced training time in practice.



Effect of Head Motion

 We simulate head motion for each subject during the 15-minute
scan that rotates the head about the spine every minute.

* We choose the rotation angle to generate realistic head motion,
and add noise.

 The average mSSIM (and standard deviation) over all functional
networks and evaluation subjects are
e BD-CNN: 0.90 (0.04),
e BDMRI-T: 0.87 (0.05),
« RA-DICT: 0.86 (0.06)
« WAVE: 0.86 (0.02),
« LOWRANK: are 0.79 (0.04).



Uncertainty Maps of Reconstruction in
Cerebral BOLD Signals

We can treat the BD-CNN output standard-deviation values as
estimates of the uncertainty, between voxels, in the reconstructed

intensities.

The artifacts introduced due to k-space under-sampling of the
original data are clearly seen in the residuals.

The corresponding per-voxel standard-deviation maps show higher
values (i.e. higher uncertainty) with spatial patterns a similar to
those in residuals.



Uncertainty Maps of Reconstruction in
Cerebral BOLD Signals
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