

A Bayesian Deep CNN Framework for Reconstructing k-t Under-sampled Resting-fMRI

Karan Taneja¹, Prachi H. Kulkarni¹, S. N. Merchant¹, Suyash P. Awate²

¹ Department of Electrical Engineering, Indian Institute of Technology (IIT) Bombay.

² Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Bombay.

Introduction

- Under-sampled reconstruction in resting-state fMRI holds the potential to enable higher spatial resolution in brain R-fMRI without increasing scan duration.
- We propose a novel convolutional neural network (CNN) framework to reconstruct R-fMRI from k-t under-sampled data.
- The CNN framework for reconstruction comprises of two jointlylearned multilayer CNN components for
 - i. explicitly **filling in missing k-space data**, using acquired data in frequency-temporal neighborhoods, and
 - ii. image **quality enhancement** in the spatiotemporal domain.
- Results show improvements over all previously know methods, in the connectivity maps for three cerebral functional networks.

Overview

- Subsampling scheme subsamples both in time and k-space; and acquisition noise is also added.
- The CNN architecture, with end-toend learning, has stage
 - 1. that uses a CNN to fill in missing k-space data using acquired data in k-t-neighborhoods,
 - 2. that includes a Fourier inverse to transform the data to the spatial domain, and
 - 3. that uses a CNN learned for image quality enhancement in the spatiotemporal domain.

Model

Loss Functions

- Mean Squared Loss (p = 2)
- Robust Loss (p = 0.5)

$$------ \arg\min_{\alpha,\beta} (1-\lambda) \sum_{n} \left\| X^{n} - \Psi^{\mathsf{M}}(Y^{n};\alpha,\beta) \right\|_{2}^{p} + \lambda \sum_{n} \sum_{\tau} \left\| X^{n}_{\tau} - \mathcal{F}^{-1} \Phi(Y^{n}_{\tau};\alpha) \right\|_{2}^{p}$$

• Bayesian Loss

$$----- \arg\min_{\alpha,\beta} \sum_{n} \sum_{\nu} \sum_{t} \frac{(X_{\nu t}^{n} - \Psi_{\nu t}^{M}(Y^{n}; \alpha, \beta))^{2}}{\Psi_{\nu t}^{S}(Y^{n}; \alpha, \beta)^{2}} + 2\log(\Psi^{S}(Y^{n}; \alpha, \beta))$$

Model

Model Variations

Model	Layers ($\Phi \& \Psi$)	Loss
S-CNN	2	Mean squared
D-CNN	4	Mean squared
RD-CNN	4	Robust
BD-CNN	4	Bayesian

Baselines

Model	Description
RA-DICT	A robust data-adaptive sparse dictionary model
WAVE	A sparse wavelet model on the spatiotemporal fMRI signal
LOWRANK	Low-rank model on the joint k-space and temporal domain
BDMRI-T	Adaption of a CNN-based dynamic- MRI reconstruction method

Results on R-fMRI Data from Human Connectome Project

Quantitative Results on Brain R-fMRI. Comparison of all methods, through mSSIM boxplots over 50 evaluation-set subjects and all functional-networks.

Results on R-fMRI Data from Human Connectome Project

Qualitative Results on Brain R-fMRI

Dorsal Attentive Network (DAN) estimated from

- (a) original data; from fitted models using
- (b) BD-CNN: mSSIM 0.93,
- (c) RD-CNN: mSSIM 0.92,
- (d) D-CNN: mSSIM 0.93,
- (e) **S-CNN**: mSSIM 0.92,
- (f) BDMRI-T: mSSIM 0:85,
- (g) **RA-DICT**: mSSIM 0:91,
- (h) WAVE: mSSIM 0:85,
- (i) LOWRANK: mSSIM 0:74; and from
- (j) 8× lower spatial resolution of (a): mSSIM0:82.

Insensitivity to Choice of Training and Validation Sets

mSSIM Boxplots over 50 evaluation set subjects and all functional networks, for BD-CNN learned from 5 different training and validation sets.

Performance for Different Values of Free-Parameter λ

Recall: arg min
$$(1 - \lambda) \sum_{n} \|X^n - \Psi^{\mathsf{M}}(Y^n; \alpha, \beta)\|_2^p + \lambda \sum_{n} \sum_{\tau} \|X_{\tau}^n - \mathcal{F}^{-1}\Phi(Y_{\tau}^n; \alpha)\|_2^p$$

- Trend: Performance deteriorates significantly as $\lambda \to 1^-$.
- Average mSSIM (and standard deviation for all functional networks and evaluation subjects) for $\lambda \in [0,0.75]$ is 0.90 (0.03), and for $\lambda =$ 1 is 0.88 (0.03); demonstrates utility of third stage of our architecture.
- We set $\lambda = 0.5$ because it leads to reduced training time in practice.

Effect of Head Motion

- We simulate head motion for each subject during the 15-minute scan that rotates the head about the spine every minute.
- We choose the rotation angle to generate realistic head motion, and add noise.
- The average mSSIM (and standard deviation) over all functional networks and evaluation subjects are
 - **BD-CNN**: 0.90 (0.04),
 - **BDMRI-T**: 0.87 (0.05),
 - **RA-DICT**: 0.86 (0.06)
 - **WAVE**: 0.86 (0.02),
 - **LOWRANK**: are 0.79 (0.04).

Uncertainty Maps of Reconstruction in Cerebral BOLD Signals

- We can treat the BD-CNN output standard-deviation values as estimates of the uncertainty, between voxels, in the reconstructed intensities.
- The artifacts introduced due to k-space under-sampling of the original data are clearly seen in the residuals.
- The corresponding per-voxel standard-deviation maps show higher values (i.e. higher uncertainty) with spatial patterns a similar to those in residuals.

Uncertainty Maps of Reconstruction in Cerebral BOLD Signals

Column 1 (a, d, g) original data, **Column 2 (b, e, h)** residual between original data and zero-filled reconstruction, and **Column 3 (c, f, i)** per-voxel uncertainty map (standarddeviation map $\Phi^{S}(.)$) for

- DAN region (row 1),
- ECN region (row 2) and
- DMN region (Row 3).

A Bayesian Deep CNN Framework for Reconstructing k-t Under-sampled Resting-fMRI

Karan Taneja, Prachi H. Kulkarni, S. N. Merchant, Suyash P. Awate

Indian Institute of Technology (IIT) Bombay

Presentation and recording by Karan Taneja

</ End of Presentation >