On the Global Self-attention Mechanism for Graph Convolutional Networks

Chengyuan Deng Rutgers University

Chen Wang Rutgers University

Global Self-attention Mechanism

GSA in Convolutional Neural Networks

- [ZGMO'18] Self-attention GAN
- Image details generated from global feature locations

Image source: <u>https://arxiv.org/abs/1805.08318</u>

Global Self-attention Mechanism

GSA in Graph Convolutional Networks

- Vanilla self-attention: information between neighbors
- [WD'20] Global self-attention: regardless of edge connection

Graph Convolutional Networks

Graph Convolutions [KW '17]

- Message-passing GNN
- First order approximation of spectral convolutions
- Layer Update

•
$$f(H^{(l+1)}, A) = \sigma(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}H^{(l)}W^{(l)})$$

where \hat{A} is a normalized adjacency matrix, and $\hat{D}_{ii} = \sum \hat{A}_{ij}$

Motivation

Attention methods in GNNs

- Attention methods in GNNs: [VCCRLB '18] [ZXT '20][ZSXMKY '18]
- [PWCLY '18] Weakness: "lack of the ability to capture long-range dependencies"
- [ZGMO'18] Self-attention GAN remedies the weakness
- Main motivation:
 - Similarity between convolutions on images and graphs
 - Can Global self-attention improves the performance of GCNs?

Motivation

Theoretical Anlaysis on GCNs

- [RHXH '19] and [LMTD '19] Over-smoothing problem of GCNs:
 - Deep GCNs: hard to optimize training loss
- [LHW '19] Why over-smoothing?
 - A special form of Laplacian smoothing
 - Converge to a feature-invariant space as
- [OS '20] Convergence rate:
 - Exponential to the maximum singular value of the convolutional filter

Contributions: Two-Fold

Theoretical Analysis

Prove: Global Self-attention can alleviate over-fitting and over-smoothing problems

GSA-GCN: A Novel Framework

- Experiments on two classical tasks: node classification and graph classification
- Empirical results corroborate our theoretical analysis

Theoretical Analysis

Main Results on Over-fitting

Assumptions: (1) d-regular graph (2) -1/1 feature influence between vertices

- Key Lemma: There exists a way to arrange the GSA feature relations, such that for at least $\Omega(\frac{n}{4^r})$ (r < n) vertices, the GSA mechanism will eliminate the influence of one vertex in the neighbors
- Proof sketch of the Key Lemma:
 - A natural corollary of Ramsey theorem

Theoretical Analysis

Main Results on Over-fitting

- Proof sketch of the Key Lemma:
 - A natural corollary of Ramsey theorem
 - R(r+1,r+1) vertices, there must exist (r+1) vertices with either +1 / -1 influence
 - Normalized GSA influence: +1 / -1, pick $\gamma = \frac{1}{\sqrt{2}}$

GSA influence:
$$+\frac{1}{d}$$
 or $-\frac{1}{d}$

• Eliminate the influence from one $v_i \in N(v')$

Key Lemma: There exists a way to arrange the GSA feature relations, such that for at least $\Omega(\frac{n}{\sqrt{r}})$ (r < n)vertices, the GSA mechanism will eliminate the influence of one vertex in the neighbors

 v_5 v_2

Theoretical Analysis

Main Results on Over-smoothing

plain GCNs

- larger maximum singular value
- High-level proof of the key lemma:
 - GSA matrix: Hermitian and Positive Definite
 - [KT '01] Minimum eigenvalue larger than 1
 - 2-norm connects singular value and above results

 $\tilde{s}^{l} = ||\tilde{W}^{l}|| = ||(I + \gamma \cdot Q)W^{l}|| \ge \lambda_{min}(P)||W^{l}|| > ||W^{l}|| = s^{l}$

The convergence rate to the feature-invariant subspace of GSA-GCN is slower than that of

Key lemma: Applying GSA is equivalent to substituting convolution weight matrices with a

 $PW = (I + \gamma \cdot Q)W$ $\lambda_{min}(P) \ge \lambda_{min}(I) + \lambda_{min}(Q) > 1$

GSA-GCN: Framework

Layer Update of GSA-GCN:

where $O^{(l)}$ is the output of the GSA layer, γ is a non-negative trainable parameter and $W^{(l)}$ is the convolution matrix of layer l

$H^{(l+1)} = \sigma((\tilde{A}H^{(l)} + \gamma O^{(l)})W^{(l)})$

GSA-GCN: Experiments

Node Classification: Inductive

- We strictly follow the experimental setup in the literature [KW'17]
- Two-layer GCN backbone is considered as baseline

ble 2: Semi-supervise Model	ed Node Cora		n Accuracy Pubmed
GCN	81.5	70.3	79.0
GAT	83.0	72.5	79.0
JK-Net (4)	80.2	68.7	78.0
DropEdge-GCN	82.8	72.3	79.6
GSA-GCN	83.3	72.9	80.1

GSA-GCN: Experiments

Node Classification: Transductive

d Node (Classification	Accuracy(%
Cora	Citeseer	Pubmed
86.1	75.9	90.2
86.4	76.6	OOM
86.9	78.3	90.5
86.5	78.7	91.2
88.2	79.1	89.4
	Cora 86.1 86.4 86.9 86.5	86.1 75.9 86.4 76.6 86.9 78.3 86.5 78.7

GSA-GCN performs competitively to the state-of-the-art

GSA-GCN: Experiments

Alleviate Over-smoothing

• As the layers go deeper, the gap between GSA-GCN and plain GCN becomes more significant

Conclusions

- Global Self-attention:
 - Propagate global node features with soft-max
 - Remedy the over-fitting and over-smoothing problem of GCNs
 - Competitive experimental results corroborate

Open Questions

- Remove the assumptions
- Geometry-independent self-attention
 - Explicitly find the fraction of vertices that have impacts
 - (Potentially) Substitute GSA with an efficient algorithm

Main References

[WD'20] On the Global Self-attention Mechanism for GraphConvolutional Networks [KW'17] Semi-supervised classification with graph convolutional networks [VCCRLB '18] Graph Attention Networks

[ZXT '20] Context aware graph convolution for skeleton-based action recognition [ZSXMKY '18] Gaan: Gated attention networks for learning on large and spatiotemporal graphs [ZGMO'18] Self-attention Generative Adversarial Networks [PWCLY '18] Geom-gcn: Geometric graph convolutional networks [RHXH '19] Dropedge: Towards deep graph convolutional networks on node classification [LMTD '19] Deepgcns: Can GCNs go as deep as CNNs? [LHW '19] Deeper insights into graph convolutional networks for semisupervised learning [OS '20] Graph neural networks exponentially lose expressive power for node classification [KT '01] Honeycombs and Sums of Hermitian Matrices