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Introduction and Motivation  

The revolutionization of deep learning in field of computer vision has changed the 
way the visual learning takes place.

The performance of deep learning models are driven by various parameters but 
to tune all of them every time, for every given dataset, is a heuristic practice.

In this paper, unlike the common practice of decaying the learning rate, we 
propose a step-wise training strategy where the learning rate and the batch size 
are tuned based on the dataset size.
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Introduction and Motivation 

Deep learning has always such questions: 

– Can the learning performance be improved without additional data? 

– Can accuracy be increased for the same architecture with the same 

dataset? 

– Can data distribution strategy boosts the accuracy and reduces the 

training cost? 

– Can it reduce network over-fitting?
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Introduction and Motivation  

The proposed training strategy randomly splits the data into small subsets and 
incrementally train the classifier by updating the dataset with other subsets in a 
progressive step-wise fashion

 a simple step-wise hyper-parameter tuning strategy to boost the network 
classification performance without using any additional data, consistently 
valued for several state-of-the-art image classification network
architectures and reduces the overall training cost by  ~40%
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Methodology

Di

D2

D1

CNN

b1, λ1

b2, λ2

bi, λi



7

Standard Baseline Approach
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In fine-tuning deep models, mainly:   

– Batch size 

– Train from scratch
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In fine-tuning deep models, mainly:   

– Learning rate

– Train from scratch
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In fine-tuning deep models, other than batch size and learning rate, dataset size is 
also a key factor:   

– Dataset size 

– Train from scratch
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Batch size + learning rate + dataset size:   

Train from scratch
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Batch size + learning rate + dataset size:   

Train from scratch
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Experimental Results 
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Datasets 
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Datasets 
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COVID-19 mask-nomask dataset. Details: train (1050 mask, 1459 no-mask) and test (264 mask, 375 no-mask) images.

Clubbed together: 1. covid mask images: https://www.kaggle.com/danielferrazcampos/face-mask-images

2. mask dataset: https://www.kaggle.com/ahmetfurkandemr/mask-datasets-v1

3. COVID19 mask image dataset: https://github.com/UniversalDataTool/coronavirus-mask-image-dataset
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Take back 

The 𝑀𝑖 trained network weights are uses as the new initializer for Mi+1 subset 
training that boost the learning curve without saturating

Analyzes a close interrelation between M, b and λ and propose a step-wise 
training to up rise the performance instead of traditional baseline training without 
performing any change in the network architecture

The proposed stepwise training reduces the risk of over-fitting by adopting 
different b and also reduces the training cost by 40%

In future, we would like to explore other aspects of CV such as object detection 
and segmentation where annotation is the biggest challenge
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