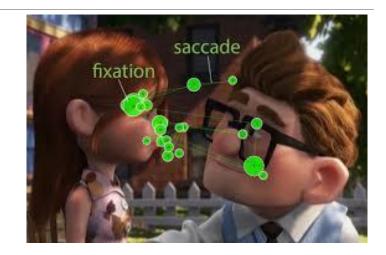
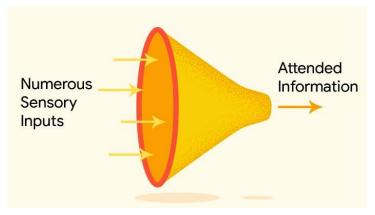
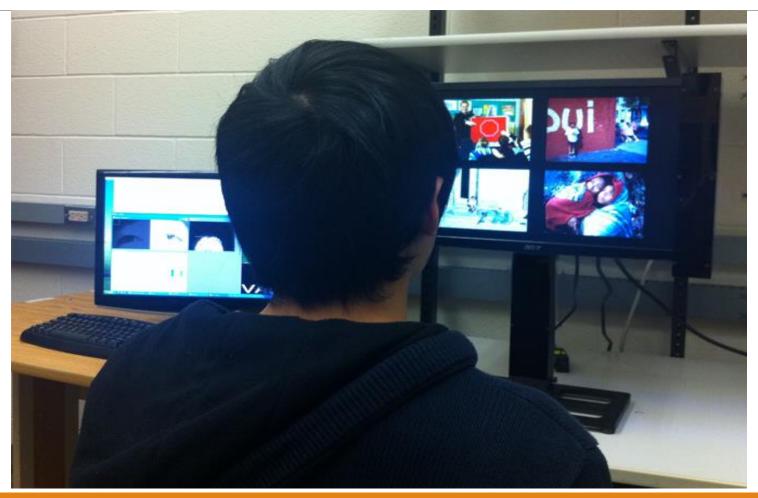
A General End-to-End Method for Characterizing Neuropsychiatric Disorders using Free-Viewing Visual Scanning Tasks

HONG YUE SEAN LIU JONATHAN CHUNG MOSHE EIZENMAN


Introduction


Purpose:

 Generalizable framework for analyzing and classifying data from free-viewing visual scanning tests used with diagnosing/monitoring neuropsychiatric disorders


Background

- Visual scanning tests collect visual scanning behaviour (VSB) through gaze-tracking to quantify cognition
- VSB are sequences of fixations and saccades
- Extractable metric from VSB: attentional bias
 - Humans have a limited capacity for information processing
 - Selective attention to certain stimuli

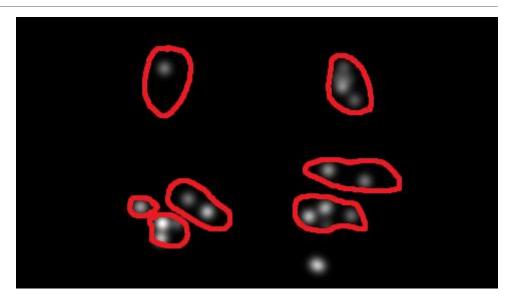
Visual Attention Scanning Technology (VAST)

Relative Fixation Time (RFT)

 $RFT(ROI) = \frac{\sum \text{Time fixated on } ROI}{\sum \text{Time fixated on slide}}$

ROIs manually defined

• Prone to bias

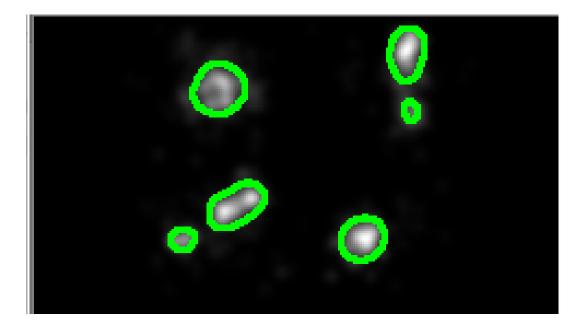

Calculations using point-based fixations

• Not robust to random errors at higher granularities

RFTs with RVAMs (RVAM-RFTs)

Creating a Relative Visual Attention Map (RVAM)

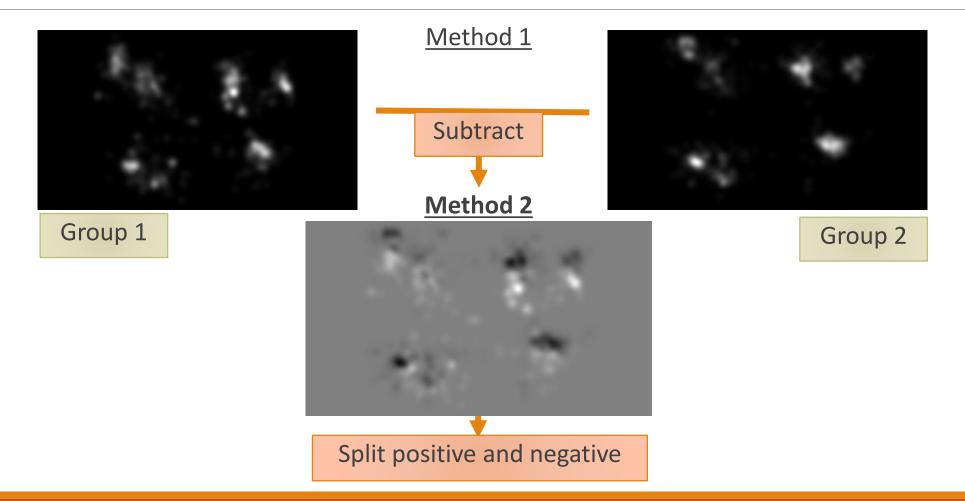
- 1. Get list of fixations on single slide
- 2. Convert each fixation to 2-D Gaussian
- 3. Scale each Gaussian by fixation duration
- 4. Normalize entire map by total fixation time

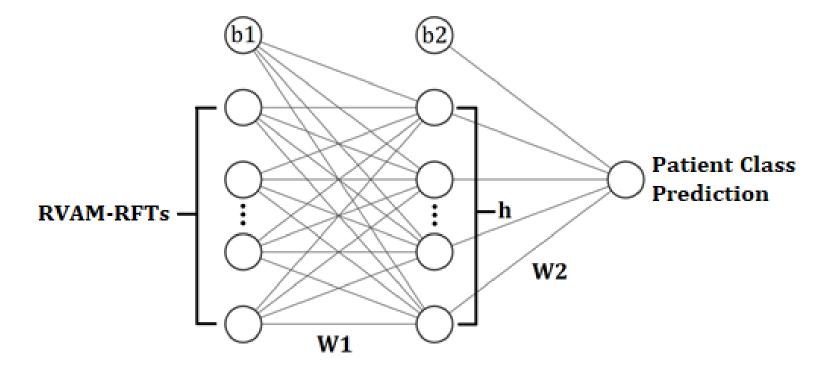


$$RVAM_RFT(ROI) = \sum_{x} \sum_{y} RVAM$$
$$(x, y) \in ROI$$

Data-driven ROI Segmentation

Use statistical RVAM averages from individuals in training set


Segment relevant ROIs for RVAM averages on each subject class


- . Threshold
- 2. Find contours
- 3. Get ROIs

An average RVAM (aRVAM) from a subject class viewing the same slide

ROI Segmentation Methods

Classification of RVAM-RFTs

Vanilla Multilayer Perceptron (MLP)

Data, Setup, and Evaluation

Evaluation on 2 visual scanning studies:

- Anorexia Nervosa (AN) study
- Depression study

Vanilla MLP classifier:

- # hidden nodes = ½ number of RVAM-RFT features
- FC layer: 0.001 regularization \rightarrow batch norm \rightarrow ReLU \rightarrow 0.5 dropout
- Training: ADAM w/ 0.001 l.r., batch size 32, 1000 epochs

Comparison against baseline model:

• Similar vanilla MLP classifier using RFT features calculated with raw fixations and image-boundary ROIs

Results

Techniques		AN			BD-MDD		
ROI	RFT	AUROC	Brier	Balanced	AUROC	Brier	Balanced
			Score	Accuracy		Score	Accuracy
Method 2	RFT_{RVAM}	0.9130	0.1005	0.8851	0.8879	0.1753	0.8187
Method 1	RFT_{RVAM}	0.9348	0.1064	0.7919	0.7954	0.2394	0.6821
Manually defined (4 image boundaries)	RFT_{RVAM}	0.9596	0.0996	0.8137	0.5900	0.3275	0.5753
Baseline Manually defined (4 image boundaries)	RFT_{raw}	0.9130	0. 1 069	0.8571	0.6522	0.2831	0.5859
Past Work [7]							
LRCN					0.879		0.801
RNN w/ 3-by-3 per-image grid ROI					0.823		0.744

CLASSIFICATION RESULTS AND COMPARISONS

Contributions & Future Work

Contributions

- Proposed a general framework for classifying subjects participating in free-viewing visual scanning tests
- Goal is for framework to be a standard baseline method and foundational framework to be built upon

Future Work

- Improve design
 - More sophisticated classifier model
 - Include other eye-movement features (order of fixations, saccadic amplitudes)
- Evaluation on more datasets

Thank you for listening!