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The Small Sample Learning problem

Ø Shortage in data is a major 
pitfall in solving problems 
through deep learning.

Ø Hard to collect large dataset.

Ø Solution: synthetically generate new images.



Small Sample Learning Challenges

Few-Shot– The learner has access to many labeled 
examples from classes not participating in the 
current classification task.

Small Sample relies on a small number
of labeled examples from each class

Few-Shot learning settings

Small Sample Learning ≠ Few Shot Learning



Augmentations with Generative Models

Our approach:
1. Instead of learning data distribution -> learn image representation 

independently. 
2. Enrich dataset using the trained model, by sampling the area around every 

learned vector.

GLICO DCGAN

Motivation: GANs can generate very realistic synthetic images

Problem: GANs Require large training set.



GLICO-Generative Latent Implicit Conditional Optimization
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Notations
Ø (𝑥!, 𝑦!), … , (𝑥", 𝑦") - set of labeled images
Ø 𝑧#| 𝑧# ∈ ℛ$ − set of learnable random vectors
Ø 𝐺%is a generator
Ø ℒ&'- cross-entropy loss
Ø ℒ()*+"- reconstruction loss
Ø ℒ = ℒ()*+"+ ℒ&'
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Small Sample Image Classification Using GLICO

• Slerp- spherical linear interpolation
• r~ Uniform[0, 0.4]
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Examples of Synthesized Images

CIFAR-10 image generation CUB-200 reconstruction



Top-1 and Top-5 accuracy (%) when augmenting a small dataset (CIFAR-100, 50 samples per class), by 

GLICO alone (second row), Auto Augment alone (third row), or both (fourth row). 

Are We Synthesizing Trivial Samples?

AutoAugment [2] Ours Top-1 Acc. Top-5 Acc.

50.37±0.05 75.61±0.01

✓ 53.35±0.23 77.60±0.12

✓ 53.80±0.10 79.18±0.13

✓ ✓ 56.31±0.02 80.66±0.04

[2] E. D. Cubuk, B. Zoph, D. Man´e, V. Vasudevan, and Q. V. Le, 
“Autoaugment: Learning augmentation policies from data”, 2019.



Top-1 accuracy (%) including STE with a different number of 
training samples per class (labeled data only).

Expermintal Results

Dataset
Samples Per 

Class Baseline Ours MixMatch Cutout Random Erase [1]*

CIFAR-
100 10 22.89±0.09 28.55±0.40 24.8 23.43±0.24 23.26±0.27 23.01 (22) 

25 38.39±0.10 43.84±0.25 40.17 39.11±0.59 37.45±0.15 28.05 (35) 

50 47.82±0.11 52.95±0.20 49.87 52.11±0.28 50.50±0.41 44.55 (48) 

100 61.37±0.13 64.27±0.04 59.03 64.49±0.10 64.03±0.22 55.99 (58) 

CUB-200 5 50.79±0.19 51.52±0.21 15.01 50.63±0.31 48.90±0.45 17.80 (35) 

10 64.11±0.22 65.13±0.12 36.02 64.33±0.02 63.72±0.20 34.23 (60) 

20 69.11±0.55 74.16±0.17 60.57 68.47±0.20 66.14±0.23 52.00 (76) 

30 75.15±0.10 77.75±0.20 70.41 74.97±0.34 73.74±0.34 62.25 (82) 
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[1] B. Barz and J. Denzler, “Deep learning on small datasets 
without pre-training using cosine loss”, 2020

* Indicates that the reported results, as obtained in our experiments, don’t match the reported results in the paper



• A novel conditional generative model (GLICO)

• Light and fast augmentation method with image generation method

• State-of-the-art of classification in the small sample settings

Code: https://github.com/IdanAzuri/glico-learning-small-sample

Summary


