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Background:
• Nowadays super-resolutions are becoming dramatically deep and
large. While their performances on benchmark datasets are
beginning to saturate.
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Background:
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(a) Drop one Residual Block in a trained model (b) Averagre PSNR on Set5 [7]

We in turn drop each residual block in a trained RCAN and report the
average PSNR on Set5.

• Gradients cannot flow to all layers when the model is too deep.
Therefore, there might be a large proportion of sub-optimized layers
or blocks in these models



Proposed Method:
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• Restrict the number of sequentially stacked blocks.

• Intensive shortcuts in the network could help gradients better conducted to all
inner layers and make the networks more sufficiently optimized.



Proposed Method:
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(a) Basic Convolutional Block (BCB) (b) Channel Attention Layer (CALayer)
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• BCB allows more skip connections with the same number of layers. 

• The multiple skip connections introduced by BCB will lead to better
gradient flow in RAN.



Proposed Method:

C
on

ca
t

1x
1 

C
on

v

3x
3 

C
on

v

FAB

Conv 
Block

Feature 
Map

Upscale

Tensor 
Operation

Mapping Stage

FAB FAB

Extract Shallow 
Features

Reconstruct
HR images

(a) Overall structure of second order RAN

(b) Structure of First-order Aggreagtion Block (FAB)
 

(c) Structure of  Reconstruction Block
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Details about a second-order RAN. (a) shows the overall structure of our second order RAN. (b) shows the
structure of first-order aggregation block, which is constructed by basic convolutional blocks (BCBs). (c) shows
the structure of our reconstruction module. Two PixelShuffle layers are used for ×4 and one is used for ×2 and
×3.



Experiments:
Benchmark results for relative small models. average PSNR/SSIM for ×2, ×3, ×4 models. 

Benchmark results for relative large models. average PSNR/SSIM for ×2, ×3, ×4 models. 



Experiments:

a) PSNR with respect to flops b) PSNR with respect to Params



Experiments:
• Study of Basic Convolutional Block (BCB).

• Study of Aggregation Period.



(c) Results on B100

(a) Results on Set5 (b) Results on Set14

(d) Results on Urban100

Experiments:
• Better Results with Less Layers



PSNR / SSIM 19.52 / 0.7490 20.60 / 0.7984 18.98 / 0.6457

20.26 / 0.7649 20.62 / 0.789619.83 / 0.7659 20.79 / 0.8119Urban100 Image-005

HR EDSR D-DBPN VDSR

RDN RCAN SAN RRN-4x5-W42

PSNR / SSIM 20.09 / 0.5813 18.32 / 0.4561 20.65 / 0.6064

18.97 / 0.4111 23.12 / 0.8311 24.35 / 0.8979Set14 Zebra

HR FSRCNN LapSRN CARN-M

CARN RRN-3x3-W48 RRN-3x4-W48 RRN-3x5-W48

23.87 / 0.8550

Experiments:
• Visual results
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