

StrongPose: Bottom-up and Strong Keypoint Heat Map Based Pose Estimation

Author/Presenter: Niaz Ahmad Corresponding author: Jongwon Yoon

Bottom-up approach for pose estimation

Estimate all keypoints (e.g ears, eyes, nose and joints)

- Bottom-up
 - Estimate all keypoints (e.g ears, eyes, nose and joints)
 - Keypoints are grouped into human instances

StrongPose uses ResNet as a backbone network

- StrongPose uses ResNet as a backbone network
- Pose Estimation Module consists of two parts

- StrongPose uses ResNet as a backbone network
- Pose Estimation Module consist of two parts
 - ✓ Classification
 - ✓ Regression

- SKHM are generated for all hard and soft keypoints
- The role of SKHM is to correctly localize and produce the heat map for each keypoint

- BHM is generated in the same manner as SKHM
- BHM helps to correctly position the human body in the image

- To increase keypoint prediction we define keypoint offset vectore Vk(x)
- Vk(x) compare each predicted 2D keypoint position P_i with the ground truth position G_k in the keypoint disk
- The Loss between P_i and G_k is panelized by L1 loss

- To increase keypoint prediction we define keypoint offset vectore Vk(x)
- Vk(x) compare each predicted 2D keypoint position P_i with the ground truth position G_k in the keypoint disk
- The Loss between P_i and G_k is panelized by L1 loss

- To increase keypoint prediction we define keypoint offset vectore Vk(x)
- Vk(x) compare each predicted 2D keypoint position P_i with the ground truth position G_k in the keypoint disk
- The Loss between P_i and G_k is panelized by L1 loss

 Pose plot module defines associations between keypoints as tuples and group all the associated keypoints into human instances

Advantages

Strong Keypoint Heat Map

 High detection rate of adjacent keypoints

Advantages

2. Better performance on hidden and occluded keypoints

Plot Pose

Advantages

3. Better prediction of keypoints of highly entangled people

Visualization results

Single-person pose estimation

Multi-person pose estimation

github.com/niazahamd89/StrongPose

Evaluation on COCO Val2017 Dataset

Method	Backbone	Input Size	OHKM	AP	AR
Top-down:					
8-stage Hourglass	-	156 x 192	×	0.669	-
8-stage Hourglass	-	156 x 156	×	0.671	-
CPN	ResNet-50	256 x 192	×	0.686	-
CPN	ResNet-50	384 x 288	×	0.706	-
CPN	ResNet-50	256 x 192	\checkmark	0.694	-
CPN	ResNet-50	384 x 288	\checkmark	0.716	-
HRNet-W48	HRNet-W48	384 x 288	×	0.763	0.812
Bottom-up:					
CMU-Pose	-	-	×	0.618	-
PersonLab(single-Scale)	ResNet-152	-	×	0.665	0.707
PersonLab(multi-scale)	ResNet-152	-	×	0.687	-
StrongPose	ResNet-101	-	×	0.690	0.757
StrongPose	ResNet-152	-	×	0.728	0.800

- 🔏 5.7 % in AP compare to Hourglass
- ¹ 2.2 % in AP compare to CPN
- 1.2 % in AP compare to CPN. (OHKM)

- 11.0 % in AP compare to CMU-Pose
- 4.1 % in AP compare to PersonLab

Evaluation on COCO Test2017 Dataset

Method	AP	AP ^{.50}	AP.75	AP^M	AP^L
Top-down:					
Mask-RCNN	0.631	0.873	0.687	0.578	0.714
G-RMI COCO-only	0.649	0.855	0.713	0.623	0.700
CPN	0.721	0.914	0.800	0.687	0.772
Bottom-up:					
CMU-Pose (+refine)	0.618	0.849	0.675	0.571	0.682
Assoc. Embed(single-Scale)	0.630	0.857	0.689	0.580	0.704
Assoc. Embed(mscale, refine)	0.655	0.879	0.777	0.690	0.752
PersonLab (single-scale)	0.665	0.880	0.726	0.624	0.723
PersonLab (multi-scale)	0.687	0.890	0.754	0.641	0.755
MultiPoseNet	0.696	0.863	0.766	0.650	0.763
StrongPose:					
ResNet101	0.708	0.889	0.752	0.652	0.753
ResNet152	0.725	0.891	0.778	0.671	0.762

- 9.4 % in AP compare to Mask-RCNN
- 7.6 % in AP compare to G-RMI
- 🔏 0.4 % in AP compare to CPN
- 10.7 % in AP compare to CMU-Pose

- 7.0 % in AP compare to Assoc
- 3.8 % in AP compare to PersonLab
- 2.9 % in AP compare to MultiPoseNet

Conclusion

- The proposed system jointly tackle the problem of pose estimation by using Strong Keypont Heat Map and person detection by using Body Heat Map
- Significant improvement of Average Precision is delivered on the COCO 2017 keypoint challenging dataset

Future Work

- Understanding human body language
- Activity recognition in live environment

Thank You

Paper ID: 2353

