

Learning Object Deformation and Motion Adaption for Semi-Supervised Video Object Segmentation

Xiaoyang Zheng*1, Xin Tan1, Jianming Guo1, Lizhuang Ma1

¹ Shanghai Jiao Tong University

- Problem
- Method
 - Network Structure
 - Synthetic Video Clip Generation
 - Inference
- Experiments
 - Experiments Settings
 - Quantitative Evaluation
 - Qualitative Evaluation
 - Ablation Study
- Conclusion

• Problem

- Method
 - Network Structure
 - Synthetic Video Clip Generation
 - Inference
- Experiments
 - Experiments Settings
 - Quantitative Evaluation
 - Qualitative Evaluation
 - Ablation Study
- Conclusion

Problem overview

Fig. 1. The shape variance and the motion difference across different frames.

Targets:

- Track and segment one or multiple objects in a video sequence
- the mask annotation is only given at the first frame of the video sequence

Challenges:

- object deformation and motions
- Difficulty to describe the **diversity**
- Difficulty to adapt to the **shape variance** of target object
- Scarcity of training data and **annotations**

- Problem
- Method
 - Network Structure
 - Synthetic Video Clip Generation
 - Inference
- Experiments
 - Experiments Settings
 - Quantitative Evaluation
 - Qualitative Evaluation
 - Ablation Study
- Conclusion

Method

Fig. 2. The structure of our proposed network.

Method-network structure

Fig. 2. The structure of our proposed network.

• Backbone

- **ResNet50** as the backbone feature extractor
- an additional channel for the **pixel-level mask**
- Obtain the knowledge from past frames
- maintains a **temporal coherence** explicitly

• Fusion Module

- Input: the feature streams of the initial frame and the current frame
- Learn the target **appearance**
- enlarge the effective receptive field and support global feature matching

Upsampling Module

- Produce a **soft segmentation** $\widehat{y_p}$
- localize target object
- Mask propagation

Method-synthetic video clip generation

Fig. 3. Synthetic video snippets generated from DAVIS-2017 training set

- Object Deformation Simulation
 - adapt to **object deformation**
 - $(M_{t_{j}}L_{t})$ to $(M_{t+1_{j}}L_{t+1})$
 - Simulate shape variance
- Motion Simulation
 - **smooth** intermediate transformation
 - Natural development

Method-Inference

- Multiple object \rightarrow several single-object segmentation problems
- Masks $\widehat{y_p}$ s \rightarrow aggregated mask
- Combine the output probability $\widehat{y_p}$ of the previous frame and current frame
- The way of **aggregation**

$$p_{i,m} = \text{softmax}(\text{logit}(\hat{p}_{i,m})) = \frac{\hat{p}_{i,m}/(1-\hat{p}_{i,m})}{\sum_{j=0}^{M} \hat{p}_{i,j}/(1-\hat{p}_{i,j})}$$

- Offline methods
 - End-to-end
 - Without extra appearance and motion cues

- Problem
- Method
 - Network Structure
 - Synthetic Video Clip Generation
 - Inference
- Experiments
 - Experiments Settings
 - Quantitative Evaluation
 - Qualitative Evaluation
 - Ablation Study
- Conclusion

Experiments-*Experiments* **Settings**

• Datasets

- DAVIS-2016
- DAVIS-2017
- YouTube-VOS
- Evaluation Metrics
 - Region similarity: the region-based segmentation similarity
 - Contour accuracy: F-measure between the contour points of the predicted mask and the ground-truth segmentation
- Baselines
 - Online methods: CINM, OSVOS-S, OnAVOS, MSK, SFL, OSVOS
 - Offline methods: PML, CTN, VPN, RGMP, FAVOS, OSMN

Experiments-*Quantitative Evaluation*

Method	Online	DAVIS-2016 [8]		DAVIS-2017 [24]		YouTube VOS [37]	
		Mean $\mathcal{J}\uparrow$	Mean $\mathcal{F} \uparrow$	Mean $\mathcal{J}\uparrow$	Mean $\mathcal{F} \uparrow$	Mean $\mathcal{J}\uparrow$	Mean $\mathcal{F} \uparrow$
CINM [17]	√	83.4	85.0	67.2	74.0	-	-
OSVOS-S [20]	\checkmark	85.6	87.5	64.7	71.3	-	-
OnAVOS [18]	\checkmark	86.1	84.9	61.6	69.1	59.3	54.2
MSK [34]	\checkmark	79.7	75.4	63.3	67.2	-	-
SFL [16]	\checkmark	76.1	76.0	-	-	-	-
OSVOS [34]	\checkmark	79.8	80.6	56.6	63.9	57.0	56.8
PML [38]	×	75.5	79.3	-	-	-	-
CTN [10]	×	73.5	69.3	-	-	-	-
VPN [27]	×	70.2	65.5	-	-	-	-
RGMP [39]	×	81.5	82.0	64.8	68.8	52.4	56.0
FAVOS [16]	×	82.4	79.5	54.6	61.8	-	-
OSMN [40]	×	74.0	72.9	52.5	57.1	52.4	50.8
Ours	×	82.0	79.7	67.5	73.5	62.9	67.0

Tab. 1.COMPARISON WITH STATE-OF-THE-ART METHODS ON THE VALIDATION SET OF DAVIS-2016 , DAVIS-2017 AND YOUTUBE-VOS

Experiments-*Qualitative Evaluation*

Image	Ground-truth	OnAVOS	OSVOS-S	RGMP	Ours
	<u>Me</u> .	بائر) (5 .	<u>\$</u>
de r	🐇 🦄	<u></u>	Ł	÷ .	ب
×	*	*	¥.	₿.A.	₩.
		\$	\$	<u>م</u>	۶.
and the group	¢.	A	i 🧍	۵.	\$.

Fig. 5. Comparison with state-of-the-art methods.

Experiments-*Ablation Study*

Metric	Baseline	+Past	+Past+Def	+Past+Def+Motion
Mean $\mathcal{J}\uparrow$	55.6	60.5	66.1	67.5
Mean $\mathcal{F} \uparrow$	67.2	69.1	70.8	73.5

Tab. 2.RESULT OF THE ABLATION STUDY ON DAVIS-2017 VALIDATION SET

Fig. 6. Ablation study on synthetic video clip generation

- Problem
- Method
 - Network Structure
 - Synthetic Video Clip Generation
 - Inference
- Experiments
 - Experiments Settings
 - Quantitative Evaluation
 - Qualitative Evaluation
 - Ablation Study
- Conclusion

Conclusion

Contributions:

- Propose the mask-propagation-based model
- Adapt to the shape variance of target
- Adapts to object motions
- Avoid the use of extensive online fine-tuning

Future work:

• Expand the video object segmentation method into interactive scenarios

Thanks