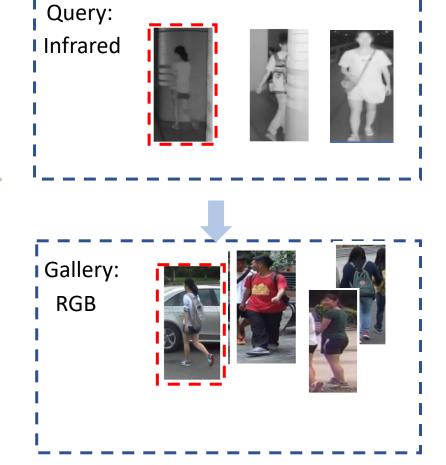


Multi-Scale Cascading Network with Compact Feature Learning for RGB-Infrared Person Re-Identification

Can Zhang¹, Hong Liu¹, Wei Guo², Mang Ye³

1

)


Problem Definition

RGB-Infrared Person Re-Identification

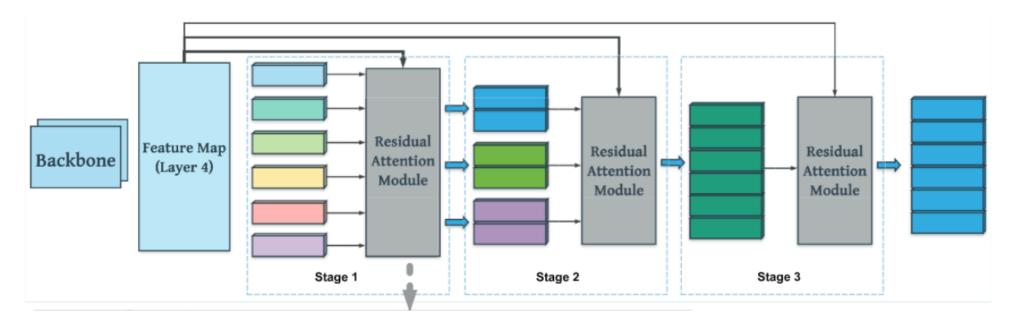
Motivations

Challenges:

Inter-Modality Discrepancy

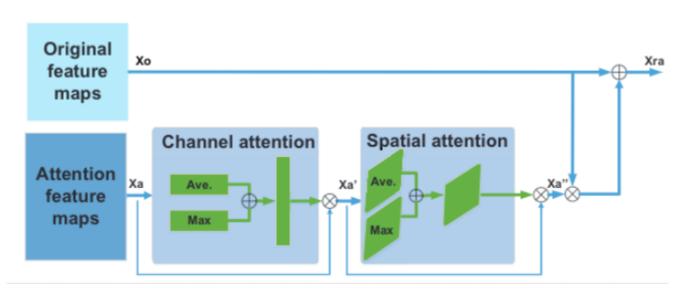
Intra-Modality Discrepancy

- **♦** Abundant Noise
- Cross-Camera Variations


Main Idea

- Multi-Scale Part Aware Attention module (MSPAC) It incorporates structured semantic information and local salient information into a unified global representations
- Marginal Exponential Center loss (MeCen)
 It learns modality-invariant correlations which enables images of the same identities to cluster compactly in feature space regardless of the modality form

Multi-Scale Part-Aware Cascading Framework (MSPAC)


❖ Part Feature Aggregation in Cascading Framework

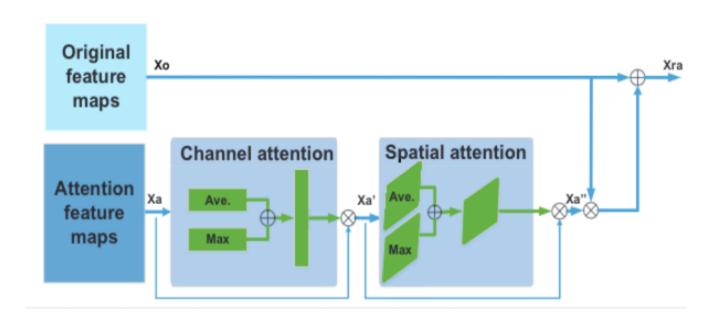
- Stage1: Fine-grained feature partition
- Stage2: Hierarchical part aggregation
- > Stage3: Global representation unification

Multi-Scale Part-Aware Cascading Framework (MSPAC)

Attention Mechanism with Two-branch Structure

- ➤ Trunk branch: original global feature
- ➤ Attention branch: Spatial attention and Channel attention

Multi-Scale Part-Aware Cascading Framework (MSPAC)


Attention Mechanism with Two-branch Structure

What to focus on?

$$CH(x_a) = \sigma(W_F(x_{avg}^{ch} + x_{max}^{ch}) + b_F),$$

Where to focus?

$$SP(x_{a}^{'}) = \sigma\{W_{conv}\{x_{avq}^{sp} || x_{max}^{sp}\}\},$$

> Final feature output

$$\begin{cases} x'_{a} = x_{a} \otimes CH(x_{a}), \\ x''_{a} = x'_{a} \otimes SP(x'_{a}), \end{cases} \longrightarrow x = x_{o} + x_{o} \otimes x''_{a}.$$

Marginal Exponential Center loss (MeCen)

$$L_{MeCen} = e^{\frac{1}{2} \sum_{i=1}^{n} \max\{||x_i - c_{y_i}||_2^2 - m, 0\}} - 1,$$

$$s.t. ||c||_2^2 = 1.$$

- > reducing acceptable variances among easy examples
- > imposing strong exponential constraints on hard positive examples

Comparison with State-of-the-Art Methods on SYSU-MM01 dataset

Datasets		SYSU															
Feature	Metric	All-search					Indoor-search										
		Single-shot			blueMulti-shot			Single-shot			blueMulti-shot						
		r=1	r=10	r=20	mAP	r=1	r=10	r=20	mAP	r=1	r=10	r=20	mAP	r=1	r=10	r=20	mAP
HOG	KISSME	2.12	16.21	29.13	3.53	2.79	18.23	31.25	1.96	3.11	25.47	46.47	7.43	4.10	29.32	50.59	3.61
	LFDA	2.33	18.58	33.38	4.35	3.82	20.48	35.84	2.20	2.44	24.13	45.50	6.87	3.42	25.27	45.11	3.19
	CCA	2.74	18.91	32.51	4.28	3.25	21.82	36.51	2.04	4.38	29.96	50.43	8.70	4.62	34.22	56.28	3.87
	CRAFT	2.59	17.93	31.50	4.24	3.58	22.90	38.59	2.06	3.03	24.07	42.89	7.07	4.16	27.75	47.16	3.17
LOMO	KISSME	2.23	18.95	32.67	4.05	2.65	20.36	34.78	2.45	3.83	31.09	52.86	8.94	4.46	34.35	58.43	4.93
	LFDA	2.89	21.11	35.36	4.81	3.86	24.01	40.54	2.61	4.81	32.16	52.50	9.56	6.27	36.29	58.11	5.15
	CCA	2.42	18.22	32.45	4.19	2.63	19.68	34.82	2.15	4.11	30.60	52.54	8.83	4.86	34.40	57.30	4.47
	CRAFT	2.34	18.70	32.93	4.22	3.03	21.70	37.05	2.13	3.89	27.55	48.16	8.37	2.45	20.20	38.15	2.69
TONE	HCML	14.32	53.16	69.17	16.16	-	-	-	-	20.82	68.86	84.46	26.38	-	-	-	-
Two-stream		11.65	47.99	65.50	12.85	16.33	58.35	74.46	8.03	15.60	61.18	81.02	21.49	22.49	72.22	88.61	13.92
One-	stream	12.04	49.68	66.74	13.67	16.26	58.14	75.05	8.59	16.94	63.55	82.10	22.95	22.62	71.74	87.82	15.04
Zero-	Padding	14.80	54.12	71.33	15.95	19.13	61.40	78.41	10.89	20.58	68.38	85.79	26.92	24.43	75.86	91.32	18.64
BI	OTR	27.32	66.96	81.07	27.32	-	-	_	_	31.92	77.18	89.28	41.86	-	-	-	-
cmGAN		26.97	67.51	80.56	27.80	31.49	72.74	85.01	22.27	31.63	77.23	89.18	42.19	37.00	80.94	92.11	32.76
$\mathrm{D}^2\mathrm{RL}$		28.90	70.60	82.40	29.20	-	-	-	-	-	-	-	-	-	-	_	-
eBDTR		27.82	67.34	81.34	28.42	-	-	-	-	32.46	77.42	89.62	42.46	-	-	-	-
MSR		37.35	83.40	93.34	38.11	43.86	86.94	95.68	30.48	39.64	89.29	97.66	50.88	46.56	93.57	98.80	40.08
AlignGAN		42.4	85.0	93.7	40.7	51.5	89.4	95.7	33.9	45.9	87.6	94.4	54.3	57.1	92.7	97.4	45.3
MSPAC-MeCen		46.62	87.59	95.77	47.26	47.57	87.64	96.11	38.53	51.63	93.48	98.82	61.54	52.81	94.16	99.37	47.09

Comparison with State-of-the-Art Methods on RegDB dataset

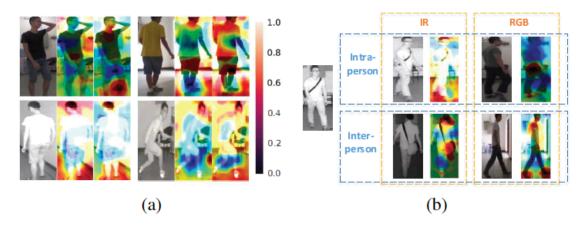
Methods	Evaluation Metrics					
	r=1	r=10	r=20	mAP		
LOMO	0.85	2.47	4.10	2.28		
HOG	13.49	33.22	43.66	10.31		
Two-stream	12.43	30.36	40.96	13.42		
One-stream	13.11	32.98	42.51	14.02		
Zero-Padding	17.75	34.21	44.35	18.90		
TONE+HCML	24.44	47.53	56.78	20.80		
BDTR	33.47	58.42	67.52	31.83		
eBDTR	34.62	58.96	68.72	33.46		
MSR	48.43	70.32	79.95	48.67		
AlignGAN	57.9	-	-	53.6		
MSPAC-MeCen	49.61	72.28	80.63	53.64		

Ablation Studies on SYSU-MM01 dataset

1. Effectiveness of Pyramid Part-aware Attention Mechanism

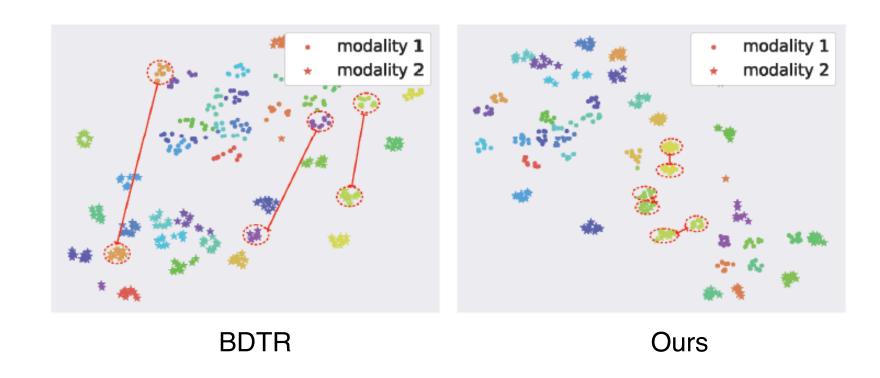
Methods		Evaluatio	n Metrics	3	
	r=1	r=5	r=10	r=20	mAP
Baseline+gid	27.14	58.77	72.60	84.35	29.22
MSPAC+gid	38.86	68.16	79.78	89.93	40.69
Baseline+pid	37.97	73.28	84.33	92.30	41.08
MSPAC+pid	41.41	70.87	84.09	93.66	41.98

2. Effectiveness of Hierarchical Part Aggregation Architecture


Met	hods	Evaluation Metrics					
Strategy	Part number	r=1	r=10	r=20	mAP		
Normal	{1}	40.94	84.22	92.74	44.86		
	{3}	40.52	84.28	93.61	42.84		
	{6}	42.89	84.91	93.29	44.31		
Hierarchical	{1,3}	45.31	84.70	92.43	44.59		
	{3,6}	33.63	81.28	92.32	36.65		
	{1,3,6}	46.62	87.59	95.77	47.26		

Ablation Studies on SYSU-MM01 dataset

3. Effectiveness of Marginal Exponential Center Loss


2*Methods	Evaluation Metrics						
	r=1	r=5	r=10	r=20	mAP		
MSPAC+gid	38.86	68.16	79.78	89.93	40.69		
+center	40.36	72.44	83.09	91.22	41.40		
+margin	42.44	72.36	82.80	90.98	43.19		
+exp	46.62	77.20	87.59	95.77	47.26		

4. Visualization Results: attention score in heat maps

Attention maps in middle and right column are results of Baseline model and ours model respectively

Visualization of clustering performance of MeCen in comparison with the BDTR baseline on the SYSU-MM01 dataset

Conclusions

 A multi-scale part aware mechanism in both channel and spatial dimension.

A hierarchical part aggregation architecture in a cascading fashion

A novel MeCen loss to model cross-modality correlations