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Introduction



Two main types of generative models

• VAEs have several advantages over GANs

GAN VAE

+ realistic images + disentangled latent space

− mode collapse + encoder model

− difficult to invert + easy to train

− blurry images

Problematic: VAE fail to produce realistic images (w.r.t GANs)

I How can we explain this lack of realism ?

I Can we combine the best of VAEs and GANs ?
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Understanding VAEs and GANs



Which problem for VAEs to produce realistic images ?

1. Information bottleneck:

LVAE = E
[
Eqθe (z|x) [− log pθd (x |z)]

]︸ ︷︷ ︸
reconstruction error

+ Iθ(x ; z)︸ ︷︷ ︸
mutual information

+ KL(pθe (z)||p(z))︸ ︷︷ ︸
prior on z

(1)

→ incomplete information

→ mean value of all possible images

→ blurry results

2. Underestimation of natural image manifold dimensionality:

→ approximation of the manifold with a simpler one

→ uncertainty on other dimensions responsible of smaller variations (e.g. textures)

→ mean value of all possible images

→ blurry results (no texture in images)
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How GANs are able to produce realistic images

GANs also underestimate the dimension of the natural image manifold.

→ Question: How are they able to produce realistic images ?

→ Answer: Mode collapse ! → only a few but plausible texture configurations are generated.
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Illustration on a toy example

dots: data points dotted line: VAE manifold dashed line: GAN manifold
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How to solve the VAE problem ?

Objective: Create a reconstruction error LZ :

• that is powerful enough to favor accurate reconstructions.

• that does not favor blurry reconstruction to allow realistic reconstructions.

IVAE

I

−∇G(z)LM

IVAE

I

−∇G(z)LZ

IVAE

I

−∇G(z) (LM + LZ)

IVAE

I

−∇G(z)LVAE

• cylinders: real data high-dimensional manifold

• black line: low-dimensional manifold of VAEs reconstructions

• arrows: gradient of different losses
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What properties such a reconstruction loss should satisfy ?

With reconstruction errors of the form LZ(x̂ , x) = 1
2 ||f (x̂)− g(x)||2 where:

• f is an arbitrary differentiable function

• g is a stochastic function

Optimal solutions x̂∗(z) verifies:

f (x̂∗(z)) = Eg(x)∼pθe (g(x)|z) [g(x)] (2)

• f (x̂) should carry the maximum of information about x̂ and g(x) should be close to f (x).

• Common optimum with the GAN objective ⇐⇒ p(f (x̂∗(z))) = p(f (x)) for z ∼ p(z) and

x ∼ pD(x).
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A simple example: the MSE

LZ(x̂ , x) = MSE (x̂ , x) = 1
2 ||x̂ − x ||2 → optimal solution:

x̂∗(z) = Ex∼pθe (x|z) [x ] (3)

• f (x̂) carry all the information about x̂ as it is the identity, and g(x) = f (x).

• Optimal solution = mix of likely solutions → blurry / unrealistic image.

p(f (x̂∗(z))) = p(x̂∗(z)) 6= p(x) = p(f (x)) for z ∼ p(z) and x ∼ pD(x).

7



The AVAE framework



Our loss

With:
f (x̂) =

µθe (x̂)
σθe

g(x) =

√
1−σ2

θe

σθe
z

→ LZ(x̂) =
1

2

∥∥∥∥∥∥
µθe (x)−

√
1− σ2

θe
z

σθe

∥∥∥∥∥∥
2

(4)

• f (x̂) carry the information about x̂ contained in z , and g(x) =

√
1−σ2

θe

σθe
z ≈ µθe (x)

σθe
= f (x)

• µθe (x̂∗(z)) =
√

1− σ2
θe
z → p(µθe (x̂∗(z))) = N (µθe (x); 0, I − Σ) = p(µθe (x)).
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Full AVAE framework

Eθe Dθd

CθcGθg

Eθe

LM

z ∼ qθe (z|x)

z ∼ p(z)

µθe (z|x)

LZ

x ∼ pθg (x|z)

x ∼ p(x)

Cθg (x)

µθd (x|z)

LR
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Results



Quantitative results on CelebA

metric VAE GAN VAE/GAN BiGAN Ours

mse ↓ 0.03± 0.00 − 0.07± 0.00 0.18± 0.01 0.05± 0.00

lpips ↓ 0.18± 0.00 − 0.09± 0.00 0.16± 0.00 0.11± 0.00

fid ↓ 60.04± 0.47 14.54± 0.41 26.45± 4.66 18.49± 5.06 15.01± 0.82

• MSE: favorable to VAE a priori.

• MSE: favorable to our approach a priori.

• LPIPS & FID: favorable to VAE/GAN a priori.
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Qualitative results

original images VAE decoder reconstructions generator reconstructions
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Conclusion
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