AVAE: Adversarial Variational Auto Encoder

Antoine Plumerault (CEA/Centrale-Supelec), Hervé Le Borgne (CEA), Céline Hudelot (Centrale-Supelec)

December 9, 2020

Introduction

Two main types of generative models

• VAEs have several advantages over GANs

-

GAN	VAE	
+ realistic images	+ disentangled latent space	
 mode collapse 	+ encoder model	
 difficult to invert 	+ easy to train	
	 blurry images 	



- ► How can we explain this lack of realism ?
- Can we combine the best of VAEs and GANs ?

Understanding VAEs and GANs

Which problem for VAEs to produce realistic images ?

1. Information bottleneck:

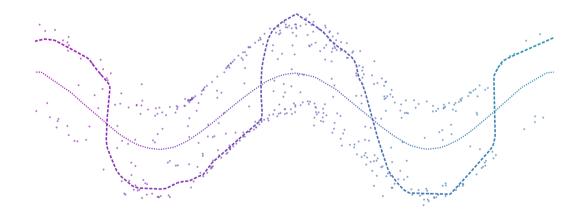
$$\mathcal{L}_{\mathsf{VAE}} = \underbrace{\mathbb{E}\left[\mathbb{E}_{q_{\theta_e}(z|x)}\left[-\log p_{\theta_d}\left(x|z\right)\right]\right]}_{\mathsf{reconstruction error}} + \underbrace{I_{\theta}(x;z)}_{\mathsf{mutual information}} + \underbrace{\mathsf{KL}(p_{\theta_e}(z)||p(z))}_{\mathsf{prior on } z}$$
(1)

- $\rightarrow\,$ incomplete information
- $\rightarrow\,$ mean value of all possible images
- \rightarrow blurry results
- 2. Underestimation of natural image manifold dimensionality:
 - ightarrow approximation of the manifold with a simpler one
 - \rightarrow uncertainty on other dimensions responsible of smaller variations (e.g. textures)
 - $\rightarrow\,$ mean value of all possible images
 - \rightarrow blurry results (no texture in images)

GANs also underestimate the dimension of the natural image manifold.

- \rightarrow Question: How are they able to produce realistic images ?
- \rightarrow Answer: Mode collapse ! \rightarrow only a few but plausible texture configurations are generated.

Illustration on a toy example



dots: data points

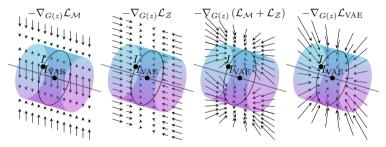
dotted line: VAE manifold

dashed line: GAN manifold

How to solve the VAE problem ?

Objective: Create a reconstruction error $\mathcal{L}_{\mathcal{Z}}$:

- that is powerful enough to favor accurate reconstructions.
- that does not favor blurry reconstruction to allow realistic reconstructions.



- cylinders: real data high-dimensional manifold
- black line: low-dimensional manifold of VAEs reconstructions
- arrows: gradient of different losses

With reconstruction errors of the form $\mathcal{L}_{\mathcal{Z}}(\hat{x}, x) = \frac{1}{2} ||f(\hat{x}) - g(x)||^2$ where:

- f is an arbitrary differentiable function
- g is a stochastic function

Optimal solutions $\hat{x}^*(z)$ verifies:

$$f(\hat{x}^*(z)) = \mathbb{E}_{g(x) \sim \rho_{\theta_e}(g(x)|z)}[g(x)]$$
(2)

- $f(\hat{x})$ should carry the maximum of information about \hat{x} and g(x) should be close to f(x).
- Common optimum with the GAN objective $\iff p(f(\hat{x}^*(z))) = p(f(x))$ for $z \sim p(z)$ and $x \sim p_D(x)$.

$$\mathcal{L}_{\mathcal{Z}}(\hat{x},x) = \textit{MSE}(\hat{x},x) = rac{1}{2} ||\hat{x} - x||^2 o \mathsf{optimal}$$
 solution:

$$\hat{x}^*(z) = \mathbb{E}_{x \sim \rho_{\theta_e}(x|z)}[x]$$
(3)

- $f(\hat{x})$ carry all the information about \hat{x} as it is the identity, and g(x) = f(x).
- Optimal solution = mix of likely solutions \rightarrow blurry / unrealistic image. $p(f(\hat{x}^*(z))) = p(\hat{x}^*(z)) \neq p(x) = p(f(x))$ for $z \sim p(z)$ and $x \sim p_D(x)$.

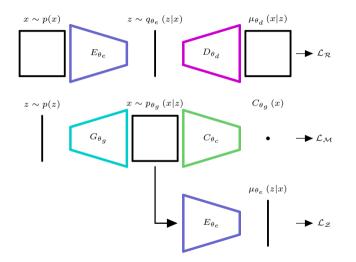
The AVAE framework

With:

$$\begin{cases}
f(\hat{x}) = \frac{\mu_{\theta_e}(\hat{x})}{\sigma_{\theta_e}} \\
g(x) = \frac{\sqrt{1 - \sigma_{\theta_e}^2}}{\sigma_{\theta_e}} z & \rightarrow \\
\end{cases}
\qquad \mathcal{L}_{\mathcal{Z}}(\hat{x}) = \frac{1}{2} \left\| \frac{\mu_{\theta_e}(x) - \sqrt{1 - \sigma_{\theta_e}^2} z}{\sigma_{\theta_e}} \right\|^2$$
(4)

- $f(\hat{x})$ carry the information about \hat{x} contained in z, and $g(x) = \frac{\sqrt{1-\sigma_{\theta_e}^2}}{\sigma_{\theta_e}} z \approx \frac{\mu_{\theta_e}(x)}{\sigma_{\theta_e}} = f(x)$
- $\mu_{\theta_e}(\hat{x}^*(z)) = \sqrt{1 \sigma_{\theta_e}^2} z \rightarrow p(\mu_{\theta_e}(\hat{x}^*(z))) = \mathcal{N}(\mu_{\theta_e}(x); 0, I \Sigma) = p(\mu_{\theta_e}(x)).$

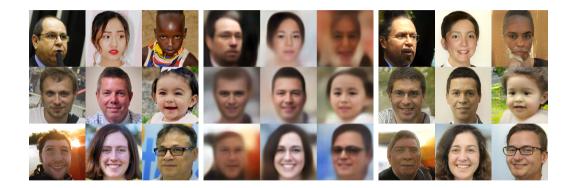
Full AVAE framework



Results

metric	VAE	GAN	VAE/GAN	BiGAN	Ours
mse ↓	0.03 ± 0.00	—	0.07 ± 0.00	0.18 ± 0.01	0.05 ± 0.00
Ipips \downarrow	0.18 ± 0.00	—	0.09 ± 0.00	0.16 ± 0.00	0.11 ± 0.00
fid \downarrow	60.04 ± 0.47	14.54 ± 0.41	26.45 ± 4.66	18.49 ± 5.06	15.01 ± 0.82

- MSE: favorable to VAE a priori.
- MSE: favorable to our approach a priori.
- LPIPS & FID: favorable to VAE/GAN a priori.



original images

VAE decoder reconstructions

generator reconstructions

Conclusion