

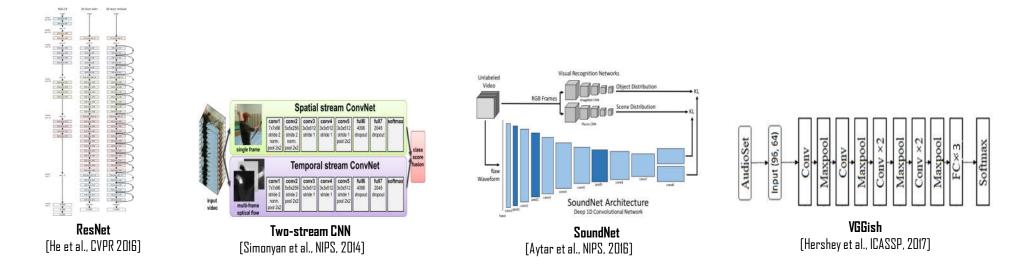
AttendAffectNet: Self-Attention based Networks for Predicting Affective Responses from Movies

Ha Thi Phuong Thao *, Balamurali B.T.*, Dorien Herremans*, Gemma Roig+

*Singapore University of Technology and Design (SUTD) +Goethe University Frankfurt

Motivation

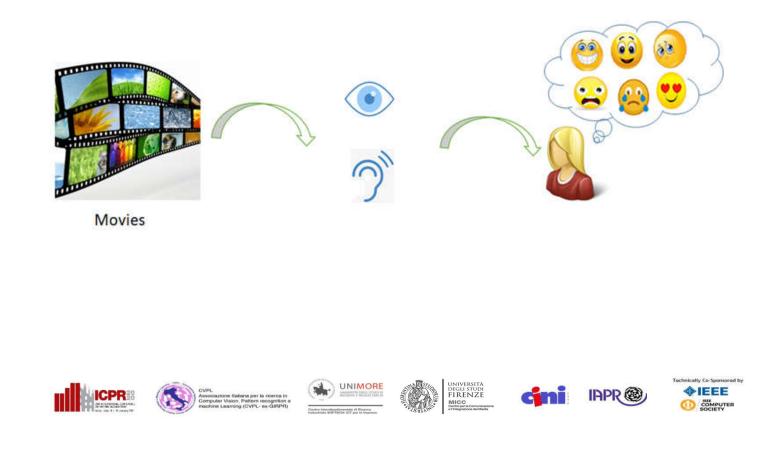
Breakthroughs in deep CNNs for image classification, action recognition and sound classification,....



Processing videos (movies, music clips) still remains a challenge

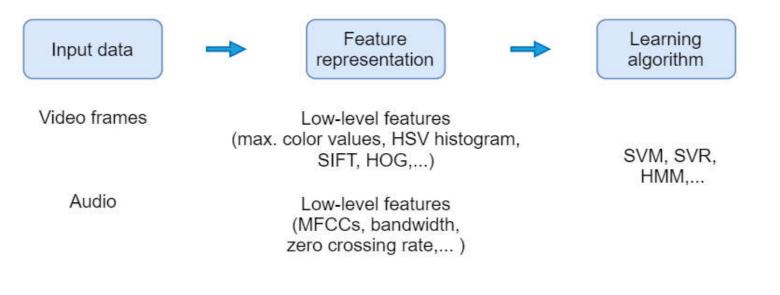
Motivation

Predict what kind of emotion evoked in a person => Hard for computers



Motivation

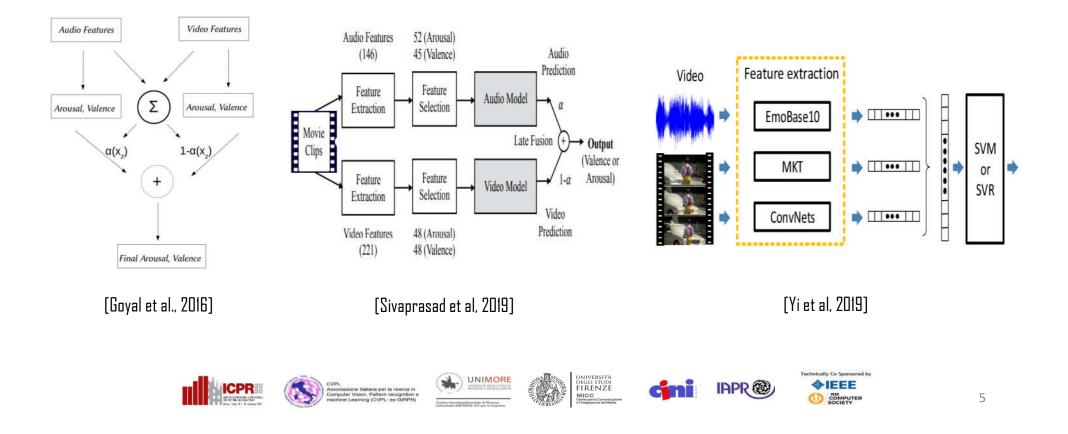
□ Many studies on predicting affective responses of viewers from movies



CVPL Associazione Italiana p Computer Vision, Patte machine Learning (CVI

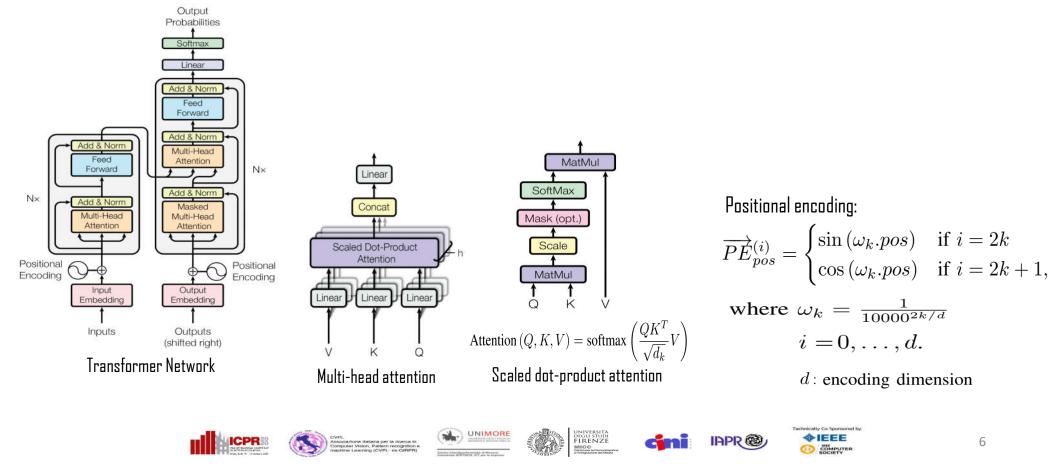
Related Work

Focus on fusion techniques, do not explicitly consider the relation among multiple modalities

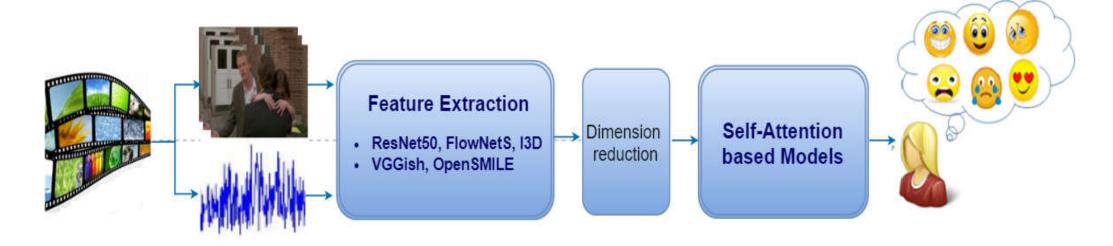


Related Work

Transformer network (Vaswani, NIPS, 2017) => self-attention mechanism could capture temporal/spatial dependencies of input sequence



Approach

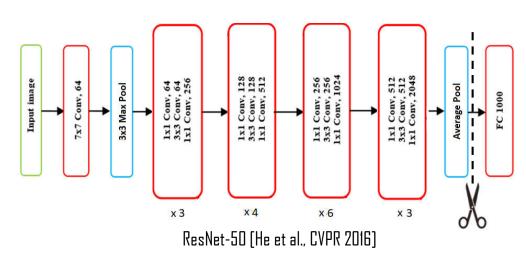


Idea: multimodal approach to predict valence and arousal separately and directly

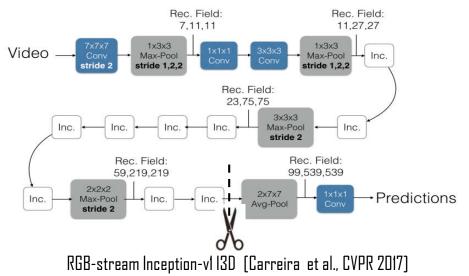
- □ Features: appearance, motion, audio features
- Models: based on the self-attention mechanism (Vaswani et al, 2017)

Feature Extraction: Appearance

- Movie excerpts of different length => FFMPEG tool: obtain T frames from each movie excerpt
- ResNet-50 (pre-trained on ImageNet): static appearance of objects from still frames
- RGB-stream I3D (pre-trained on Kinetics): spatio-temporal features (appearance and temporal relation)



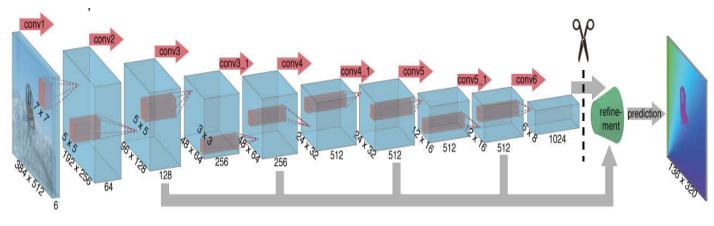
- Each frame: 2048- feature vector
- Element-wise averaging over all frames/each movie excerpt
- => 2048-feature vector/movie excerpt



- Remove all after the last Inception module (i.e. "mixed_5_c" layer)
- Input: T frames (C x T x H x W) => Output: $1024 \times \frac{T}{8} \times \frac{H}{32} \times \frac{W}{32}$
- Average Pooling: kernel size of $\frac{T}{8} \times \frac{H}{32} \times \frac{W}{32}$
- => 1024- feature vector/each movie excerpt

Feature Extraction: Motion

- Optical flow estimation: Expensive!!!
- FlowNet Simple: pre-trained on Flying Chairs dataset (Dosovitskiy et al., ICCV, 2015)



FlowNet Simple (Dosovitskiy et al., ICCV, 2015)

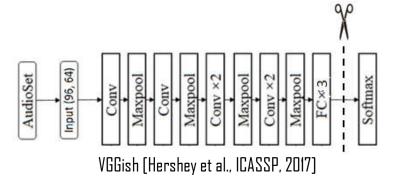
- Each pair of consecutive frames: 1024-feature vector
- Element-wise averaging over all pairs of frames/each movie excerpt
 - => 1024-feature vector/movie excerpt

Feature Extraction: Audio

DpenSMILE:

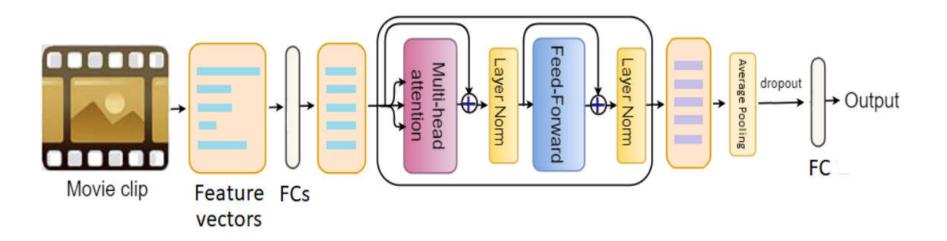
- "emobase2010.conf" (INTERSPEECH 2010 paralinguistics challenge)
- Window size = 320ms, hop size = 40ms => 1,582 features.
- Element-wise averaging over all 320-ms windows/each movie excerpt
 => 1,582-feature vector/movie excerpt

VGGish: pre-trained on AudioSet (sound classification)



- Each 0.96s => 128 features
- Element-wise averaging over all 0.96-s audio segments/each movie excerpt
- => 128-feature vector/movie excerpt

Proposed Model 1: Feature AttendAffectNet



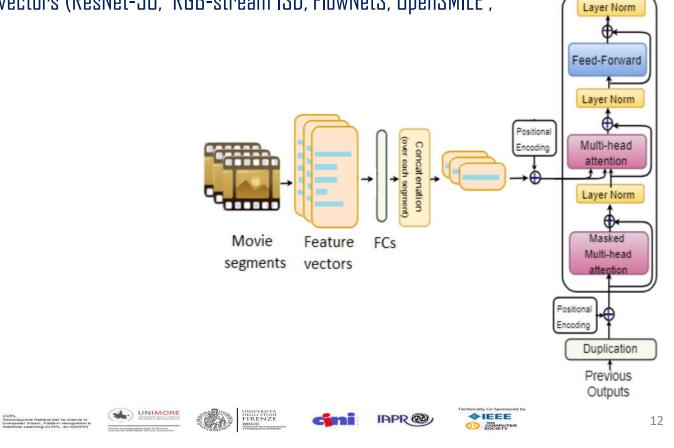
5 feature vectors: ResNet-50 (2048), RGB-stream I3D (1024), FlowNetS (1024), OpenSMILE (1582), VGGish (128)

Proposed Model 2: Temporal AttendAffectNet

D Split each original movie clip into segments of the same length.

ICPR

Each movie segment: 5 feature vectors (ResNet-50, RGB-stream I3D, FlowNetS, OpenSMILE, VGGish)



Output

dropout

) FC

Results: Extended COGNIMUSE and Global EIMT16

ACCURACY OF THE PROPOSED MODELS ON THE EXTENDED COGNIMUSE DATASET.

	Arousal		Valence	
Models	MSE	PCC	MSE	PCC
Feature AAN (only video)	0.152	0.518	0.204	0.483
Feature AAN (only audio)	0.125	0.621	0.185	0.543
Feature AAN (video and audio)	0.124	0.630	0.178	0.572
Temporal AAN (only video)	0.178	0.457	0.267	0.232
Temporal AAN (only audio)	0.162	0.472	0.247	0.254
Temporal AAN (video and audio)	0.153	0.551	0.238	0.319
Sivaprasad et al. [23]	0.08	0.84	0.21	0.50

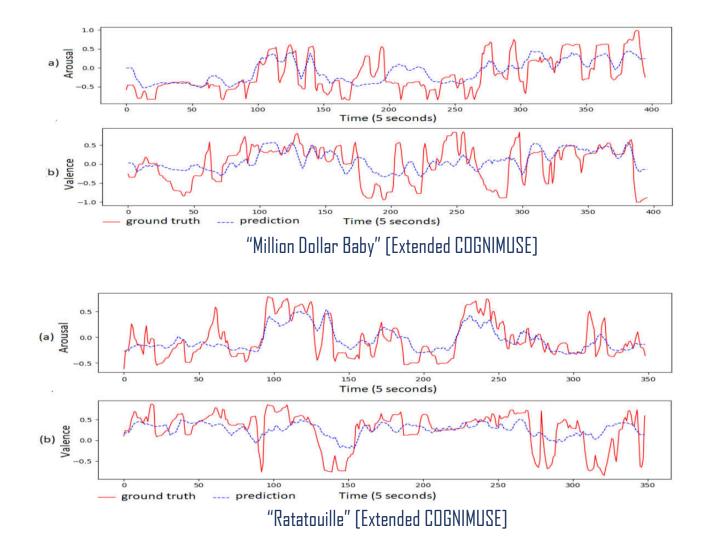
ACCURACY OF THE PROPOSED MODELS IN COMPARISON WITH STATE-OF-THE-ART ON THE GLOBAL EIMT16.

	Arousal		Valence	
Models	MSE	PCC	MSE	PCC
Feature AAN (only video)	0.933	0.350	0.764	0.342
Feature ANN (only audio)	1.111	0.397	0.209	0.327
Feature ANN (video and audio)	0.742	0.503	0.185	0.467
Temporal ANN (only video)	1.182	0.151	0.256	0.190
Temporal ANN (only audio)	1.159	0.185	0.225	0.285
Temporal ANN (video and audio)	0.854	0.210	0.218	0.415
Liu et al. [56]	1.182	0.212	0.236	0.379
Chen et al. [55]	1.479	0.467	0.201	0.419
Yi et al. [22]	1.173	0.446	0.198	0.399
Yi et al. [41]	0.542	0.522	0.193	0.468

CVPL Associazione Italiana p Computer Vision, Pall machine Learning (CV

IAPR @

Visualization



Summary

- Use pre-trained deep neural networks and the OpenSMILE toolkit to extract features from audio and video
- Compare different ways to integrate the extracted features using the self-attention based networks.
- The AttendAffectNet models trained on audio features outperforms those on video features
- Model combining all features (video, audio) reaches the highest performance

IRPR)

Acknowledgement

This work is supported by:

- MOE Tier 2 grant no. MOE2018-T2-2-161
- □ SRG ISTD 2017 129

Source code:

https://github.com/ivyha010/AttendAffectNet

