
Quasibinary Classifier for Images with
Zero and Multiple Labels

Shuai Liao, Efstratios Gavves, ChangYong Oh, Cees Snoek
University of Amsterdam

Which classifier to choose?

[]Bird [✓]Cat [✓]Dog

Image classification task with 3 classes: { Bird, Cat, Dog }

[]Bird []Cat []Dog[✓]Bird []Cat []Dog

One-vs-rest classification Multi-labels classification Zero-label classification

Softmax classifier Ensemble of binary classifiers

𝑝! =
"#$(&!)
∑" "#$(&")

𝑝# =
exp(𝑧#)

1 + exp(𝑧#)
(Sigmoid activiation)

Motivation
Softmax classifier:

• ✔ Leverage prior knowledge #label=1.
• ✔ Scale-up to large number of classes.
• ✔ Stable gradient, stable training.
• ✘ Unable handle 0/N-label

classification.

Ensemble of binary classifiers:

• ✔ Flexible to handle 0/N-label.
• ✘ Do not model correlation.
• ✘ Do not scale-up to large number of

classes.
• ✘ Unstable to train (saturate easily).

𝑝! =
#$%('!)
∑" #$%('")

𝑝! =
exp(𝑧!)

1 + exp(𝑧!)
(Sigmoid activiation)

Observation: Softmax and Binary classifier have similar form.
The difference is on the denominator (normalization factor).

Ours: Quasibinary classifier
Goal: Learn a shared normalization factor as a function C(𝑋)

w.r.t. entire dataset X={ x(i) } and all K classes.

Constraints:

I) ∑!)*+ 𝑞! = #label (see proof in main paper).

II) 𝑞!
(,) ∈ 0,1 .

𝑝 𝑦 = 𝑘 𝑥 = 𝑞! =
exp 𝑧!
C(X)

(Quasibinary activation)

Mini-batch training

(b) Prediction matrix: P = {!"
($)}(a) Logits matrix: Z = {&"

($)}

1

B

1 Kk

i

1

B

1 Kk

i
!"
($) = ()*+

,-./0(12.342)

(c) Label matrix: Y = {5"
($)}

1

B

1 Kk

i

1
1
1
2
3
0
0

1-label samples

n-label samples

0-label samples

labels

6788

Classes

Ba
tc

h
siz

e

Training: Maximize Likelihood Estimation, i.e. ∑,,! 𝑦!
(,) log(𝑞!

(,)), with

1)

2) Minimize (Penalize any violation of 𝑞!
(,) > 1).

Upon the convergence of training, C(X) also converges to a constant C.

In defining our model, we also start from Bernoulli random
variables. However, in the mean parameters of the Bernoulli
distributions we introduce a shared constant C that is not a ran-
dom variable and is shared across all likelihood terms across
classes (like softmax) and -importantly- all images. Namely,
our Bernoulli variables are modelled as y(i)k ⇠ Bernoulli(qk),
where

q(i)k = q(y(i)k |x(i), X\(i)) =
exp(z(i)k)

C(x(i), X\(i))
=

exp(z(i)k)

C(X)
. (4)

Note that, as intended, the normalization constant is shared
between samples and does not depend on specific classes.
Therefore, the predictions modelled by the Bernoulli random
variables are still binary but not independent. As such, qua-
sibinary classifiers can seamlessly work in multiple-label or
zero-label setting, where an image may contain several objects
from different classes or none at all. In the case of multiple
labels present in an image, each of the Bernoulli variables shall
return their confidence in the class being present or not, albeit
these confidences are not independent to each other. And in
the case the image contains no relevant objects, the Bernoulli
variables shall all return low confidence without being forced
to either select wrongly one of the classes as being present or
to assign the same likelihood to all wrong classes.

For the quasibinary classifiers we use the same scoring
function as the binary and softmax classifiers, that is an
exponential exp(·), which ensures positivity. Importantly, note
that now the normalization function depends on all the training
data, C(X). Namely, we have a normalization function that is
shared across all classes and training data points, as it depends
on the logits of all the training data points. This is crucial,
since (i) a shared normalization function across classes is able
to couple individual binary classifiers together, thus jointly
optimizing them while taking into account the knowledge of
how many labels are present. Moreover, (ii) having a shared
normalization function across training data points allows the
quasibinary scoring functions to “communicate” with each
other. Thus, the classifiers learn to predict confidence scores
that are comparable across classes and different data points,
thus returning better calibrated probabilities.

As with ensembles of binary classifiers, the probability
output space is complemented by p̄k = 1 � pk, thus having
the total sum p̄k + pk = 1, which is a requirement for a valid
probability space. Furthermore, for a valid probability space
we need to make sure that 0 < pk < 1, which is possible
by a careful choice of an activation function for the classifier
neurons. In the end, the joint likelihood is equal to

p(Y |X) =
Y

i

p(y(i)|X) =
Y

i

p(y(i)|x(i), X\(i)), (5)

where the conditioning variables x(i), X\(i)) together make up
for the X variable in the normalization constant C(X).

Choosing normalization function C(X). Clearly, the
choice of the normalization function is critical. There exist
several requirements.

First, we want our quasibinary classifiers to be jointly
optimized while exploiting the free prior knowledge of the
number of labels per training sample, i.e. #label = n where
n 2 [0, 1, · · · ,K]. We can show that this prior knowledge
is equivalent to the following constraint in the predicted
probability qk,

X

k

qk = #label. (6)

We provide the proof in the supplementary material. Note that
the reason for the sum of all qk being possibly greater than 1 is
that the presence (or not) of the various labels yk in a training
sample is not mutually exclusive. As a special case, consider
#label=1, equation (6) is exactly what the softmax classifier
enforces. A second requirement regarding the normalizing
function is computational tractability, as depending on all data,
x(i), X\(i), is potentially prohibitive.

B. Algorithm

In the previous section we explained that the normalization
function of quasibinary classifiers is a function shared across
classes and across data points. As this normalization function
is shared across all data points and classes, it needs to be a
constant function. This constant normalization function must
then be learned throughout the training so as to satisfy several
constraints. First, by the end of the training the probability
estimates must lie within the [0, 1] range. Second, the normal-
ization function must be trained to adhere to the constraint of
equation (6). That is, we want our quasibinary classifiers to
satisfy

argmax
X

i,k

y(i)k log(q(i)k) (7)

s.t. q(i)k 2 [0, 1] 8i, k (8)
X

k

q(i)k = #labels(i) (9)

Similar to stochastic gradient descent, we rely on stochastic
mini-batches B instead of the whole training set.

Training. Rather than enforcing the constraint in equa-
tion (6) for all samples, we relax the constraint to batch
level for computational tractability. Namely, given that our
normalizing function is a constant we have that

BX

i

KX

k

exp(z(i)k)/C =
X

i

#label(i)

) C =
1

N

BX

i=1

KX

k=1

exp(z(i)k) (10)

where N is the total number of labels a batch of data has.
Following [21] we resort to Lagrange relaxation to derive the
final learning objective and optimize for the model parameters
✓

L(✓) = 1

B

BX

i=1

KX

k=1

y(i)k · log q(i)k �max(log q(i)k , 0), (11)

where log q(i)k = z(i)k � logC (12)

(b) Probability matrix 𝐏 = {𝑞!
(#)}

𝑞!
(#) =

exp 𝑧!
(#)

𝐶(𝑋)

In defining our model, we also start from Bernoulli random
variables. However, in the mean parameters of the Bernoulli
distributions we introduce a shared constant C that is not a ran-
dom variable and is shared across all likelihood terms across
classes (like softmax) and -importantly- all images. Namely,
our Bernoulli variables are modelled as y(i)k ⇠ Bernoulli(qk),
where

q(i)k = q(y(i)k |x(i), X\(i)) =
exp(z(i)k)

C(x(i), X\(i))
=

exp(z(i)k)

C(X)
. (4)

Note that, as intended, the normalization constant is shared
between samples and does not depend on specific classes.
Therefore, the predictions modelled by the Bernoulli random
variables are still binary but not independent. As such, qua-
sibinary classifiers can seamlessly work in multiple-label or
zero-label setting, where an image may contain several objects
from different classes or none at all. In the case of multiple
labels present in an image, each of the Bernoulli variables shall
return their confidence in the class being present or not, albeit
these confidences are not independent to each other. And in
the case the image contains no relevant objects, the Bernoulli
variables shall all return low confidence without being forced
to either select wrongly one of the classes as being present or
to assign the same likelihood to all wrong classes.

For the quasibinary classifiers we use the same scoring
function as the binary and softmax classifiers, that is an
exponential exp(·), which ensures positivity. Importantly, note
that now the normalization function depends on all the training
data, C(X). Namely, we have a normalization function that is
shared across all classes and training data points, as it depends
on the logits of all the training data points. This is crucial,
since (i) a shared normalization function across classes is able
to couple individual binary classifiers together, thus jointly
optimizing them while taking into account the knowledge of
how many labels are present. Moreover, (ii) having a shared
normalization function across training data points allows the
quasibinary scoring functions to “communicate” with each
other. Thus, the classifiers learn to predict confidence scores
that are comparable across classes and different data points,
thus returning better calibrated probabilities.

As with ensembles of binary classifiers, the probability
output space is complemented by p̄k = 1 � pk, thus having
the total sum p̄k + pk = 1, which is a requirement for a valid
probability space. Furthermore, for a valid probability space
we need to make sure that 0 < pk < 1, which is possible
by a careful choice of an activation function for the classifier
neurons. In the end, the joint likelihood is equal to

p(Y |X) =
Y

i

p(y(i)|X) =
Y

i

p(y(i)|x(i), X\(i)), (5)

where the conditioning variables x(i), X\(i)) together make up
for the X variable in the normalization constant C(X).

Choosing normalization function C(X). Clearly, the
choice of the normalization function is critical. There exist
several requirements.

First, we want our quasibinary classifiers to be jointly
optimized while exploiting the free prior knowledge of the
number of labels per training sample, i.e. #label = n where
n 2 [0, 1, · · · ,K]. We can show that this prior knowledge
is equivalent to the following constraint in the predicted
probability qk,

X

k

qk = #label. (6)

We provide the proof in the supplementary material. Note that
the reason for the sum of all qk being possibly greater than 1 is
that the presence (or not) of the various labels yk in a training
sample is not mutually exclusive. As a special case, consider
#label=1, equation (6) is exactly what the softmax classifier
enforces. A second requirement regarding the normalizing
function is computational tractability, as depending on all data,
x(i), X\(i), is potentially prohibitive.

B. Algorithm

In the previous section we explained that the normalization
function of quasibinary classifiers is a function shared across
classes and across data points. As this normalization function
is shared across all data points and classes, it needs to be a
constant function. This constant normalization function must
then be learned throughout the training so as to satisfy several
constraints. First, by the end of the training the probability
estimates must lie within the [0, 1] range. Second, the normal-
ization function must be trained to adhere to the constraint of
equation (6). That is, we want our quasibinary classifiers to
satisfy

argmax
X

i,k

y(i)k log(q(i)k) (7)

s.t. q(i)k 2 [0, 1] 8i, k (8)
X

k

q(i)k = #labels(i) (9)

Similar to stochastic gradient descent, we rely on stochastic
mini-batches B instead of the whole training set.

Training. Rather than enforcing the constraint in equa-
tion (6) for all samples, we relax the constraint to batch
level for computational tractability. Namely, given that our
normalizing function is a constant we have that

BX

i

KX

k

exp(z(i)k)/C =
X

i

#label(i)

) C =
1

N

BX

i=1

KX

k=1

exp(z(i)k) (10)

where N is the total number of labels a batch of data has.
Following [21] we resort to Lagrange relaxation to derive the
final learning objective and optimize for the model parameters
✓

L(✓) = 1

B

BX

i=1

KX

k=1

y(i)k · log q(i)k �max(log q(i)k , 0), (11)

where log q(i)k = z(i)k � logC (12)

In defining our model, we also start from Bernoulli random
variables. However, in the mean parameters of the Bernoulli
distributions we introduce a shared constant C that is not a ran-
dom variable and is shared across all likelihood terms across
classes (like softmax) and -importantly- all images. Namely,
our Bernoulli variables are modelled as y(i)k ⇠ Bernoulli(qk),
where

q(i)k = q(y(i)k |x(i), X\(i)) =
exp(z(i)k)

C(x(i), X\(i))
=

exp(z(i)k)

C(X)
. (4)

Note that, as intended, the normalization constant is shared
between samples and does not depend on specific classes.
Therefore, the predictions modelled by the Bernoulli random
variables are still binary but not independent. As such, qua-
sibinary classifiers can seamlessly work in multiple-label or
zero-label setting, where an image may contain several objects
from different classes or none at all. In the case of multiple
labels present in an image, each of the Bernoulli variables shall
return their confidence in the class being present or not, albeit
these confidences are not independent to each other. And in
the case the image contains no relevant objects, the Bernoulli
variables shall all return low confidence without being forced
to either select wrongly one of the classes as being present or
to assign the same likelihood to all wrong classes.

For the quasibinary classifiers we use the same scoring
function as the binary and softmax classifiers, that is an
exponential exp(·), which ensures positivity. Importantly, note
that now the normalization function depends on all the training
data, C(X). Namely, we have a normalization function that is
shared across all classes and training data points, as it depends
on the logits of all the training data points. This is crucial,
since (i) a shared normalization function across classes is able
to couple individual binary classifiers together, thus jointly
optimizing them while taking into account the knowledge of
how many labels are present. Moreover, (ii) having a shared
normalization function across training data points allows the
quasibinary scoring functions to “communicate” with each
other. Thus, the classifiers learn to predict confidence scores
that are comparable across classes and different data points,
thus returning better calibrated probabilities.

As with ensembles of binary classifiers, the probability
output space is complemented by p̄k = 1 � pk, thus having
the total sum p̄k + pk = 1, which is a requirement for a valid
probability space. Furthermore, for a valid probability space
we need to make sure that 0 < pk < 1, which is possible
by a careful choice of an activation function for the classifier
neurons. In the end, the joint likelihood is equal to

p(Y |X) =
Y

i

p(y(i)|X) =
Y

i

p(y(i)|x(i), X\(i)), (5)

where the conditioning variables x(i), X\(i)) together make up
for the X variable in the normalization constant C(X).

Choosing normalization function C(X). Clearly, the
choice of the normalization function is critical. There exist
several requirements.

First, we want our quasibinary classifiers to be jointly
optimized while exploiting the free prior knowledge of the
number of labels per training sample, i.e. #label = n where
n 2 [0, 1, · · · ,K]. We can show that this prior knowledge
is equivalent to the following constraint in the predicted
probability qk,

X

k

qk = #label. (6)

We provide the proof in the supplementary material. Note that
the reason for the sum of all qk being possibly greater than 1 is
that the presence (or not) of the various labels yk in a training
sample is not mutually exclusive. As a special case, consider
#label=1, equation (6) is exactly what the softmax classifier
enforces. A second requirement regarding the normalizing
function is computational tractability, as depending on all data,
x(i), X\(i), is potentially prohibitive.

B. Algorithm

In the previous section we explained that the normalization
function of quasibinary classifiers is a function shared across
classes and across data points. As this normalization function
is shared across all data points and classes, it needs to be a
constant function. This constant normalization function must
then be learned throughout the training so as to satisfy several
constraints. First, by the end of the training the probability
estimates must lie within the [0, 1] range. Second, the normal-
ization function must be trained to adhere to the constraint of
equation (6). That is, we want our quasibinary classifiers to
satisfy

argmax
X

i,k

y(i)k log(q(i)k) (7)

s.t. q(i)k 2 [0, 1] 8i, k (8)
X

k

q(i)k = #labels(i) (9)

Similar to stochastic gradient descent, we rely on stochastic
mini-batches B instead of the whole training set.

Training. Rather than enforcing the constraint in equa-
tion (6) for all samples, we relax the constraint to batch
level for computational tractability. Namely, given that our
normalizing function is a constant we have that

BX

i

KX

k

exp(z(i)k)/C =
X

i

#label(i)

) C =
1

N

BX

i=1

KX

k=1

exp(z(i)k) (10)

where N is the total number of labels a batch of data has.
Following [21] we resort to Lagrange relaxation to derive the
final learning objective and optimize for the model parameters
✓

L(✓) = 1

B

BX

i=1

KX

k=1

y(i)k · log q(i)k �max(log q(i)k , 0), (11)

where log q(i)k = z(i)k � logC (12)

𝑞#
(%)

In defining our model, we also start from Bernoulli random
variables. However, in the mean parameters of the Bernoulli
distributions we introduce a shared constant C that is not a ran-
dom variable and is shared across all likelihood terms across
classes (like softmax) and -importantly- all images. Namely,
our Bernoulli variables are modelled as y(i)k ⇠ Bernoulli(qk),
where

q(i)k = q(y(i)k |x(i), X\(i)) =
exp(z(i)k)

C(x(i), X\(i))
=

exp(z(i)k)

C(X)
. (4)

Note that, as intended, the normalization constant is shared
between samples and does not depend on specific classes.
Therefore, the predictions modelled by the Bernoulli random
variables are still binary but not independent. As such, qua-
sibinary classifiers can seamlessly work in multiple-label or
zero-label setting, where an image may contain several objects
from different classes or none at all. In the case of multiple
labels present in an image, each of the Bernoulli variables shall
return their confidence in the class being present or not, albeit
these confidences are not independent to each other. And in
the case the image contains no relevant objects, the Bernoulli
variables shall all return low confidence without being forced
to either select wrongly one of the classes as being present or
to assign the same likelihood to all wrong classes.

For the quasibinary classifiers we use the same scoring
function as the binary and softmax classifiers, that is an
exponential exp(·), which ensures positivity. Importantly, note
that now the normalization function depends on all the training
data, C(X). Namely, we have a normalization function that is
shared across all classes and training data points, as it depends
on the logits of all the training data points. This is crucial,
since (i) a shared normalization function across classes is able
to couple individual binary classifiers together, thus jointly
optimizing them while taking into account the knowledge of
how many labels are present. Moreover, (ii) having a shared
normalization function across training data points allows the
quasibinary scoring functions to “communicate” with each
other. Thus, the classifiers learn to predict confidence scores
that are comparable across classes and different data points,
thus returning better calibrated probabilities.

As with ensembles of binary classifiers, the probability
output space is complemented by p̄k = 1 � pk, thus having
the total sum p̄k + pk = 1, which is a requirement for a valid
probability space. Furthermore, for a valid probability space
we need to make sure that 0 < pk < 1, which is possible
by a careful choice of an activation function for the classifier
neurons. In the end, the joint likelihood is equal to

p(Y |X) =
Y

i

p(y(i)|X) =
Y

i

p(y(i)|x(i), X\(i)), (5)

where the conditioning variables x(i), X\(i)) together make up
for the X variable in the normalization constant C(X).

Choosing normalization function C(X). Clearly, the
choice of the normalization function is critical. There exist
several requirements.

First, we want our quasibinary classifiers to be jointly
optimized while exploiting the free prior knowledge of the
number of labels per training sample, i.e. #label = n where
n 2 [0, 1, · · · ,K]. We can show that this prior knowledge
is equivalent to the following constraint in the predicted
probability qk,

X

k

qk = #label. (6)

We provide the proof in the supplementary material. Note that
the reason for the sum of all qk being possibly greater than 1 is
that the presence (or not) of the various labels yk in a training
sample is not mutually exclusive. As a special case, consider
#label=1, equation (6) is exactly what the softmax classifier
enforces. A second requirement regarding the normalizing
function is computational tractability, as depending on all data,
x(i), X\(i), is potentially prohibitive.

B. Algorithm

In the previous section we explained that the normalization
function of quasibinary classifiers is a function shared across
classes and across data points. As this normalization function
is shared across all data points and classes, it needs to be a
constant function. This constant normalization function must
then be learned throughout the training so as to satisfy several
constraints. First, by the end of the training the probability
estimates must lie within the [0, 1] range. Second, the normal-
ization function must be trained to adhere to the constraint of
equation (6). That is, we want our quasibinary classifiers to
satisfy

argmax
X

i,k

y(i)k log(q(i)k) (7)

s.t. q(i)k 2 [0, 1] 8i, k (8)
X

k

q(i)k = #labels(i) (9)

Similar to stochastic gradient descent, we rely on stochastic
mini-batches B instead of the whole training set.

Training. Rather than enforcing the constraint in equa-
tion (6) for all samples, we relax the constraint to batch
level for computational tractability. Namely, given that our
normalizing function is a constant we have that

BX

i

KX

k

exp(z(i)k)/C =
X

i

#label(i)

) C =
1

N

BX

i=1

KX

k=1

exp(z(i)k) (10)

where N is the total number of labels a batch of data has.
Following [21] we resort to Lagrange relaxation to derive the
final learning objective and optimize for the model parameters
✓

L(✓) = 1

B

BX

i=1

KX

k=1

y(i)k · log q(i)k �max(log q(i)k , 0), (11)

where log q(i)k = z(i)k � logC (12)

= N

In defining our model, we also start from Bernoulli random
variables. However, in the mean parameters of the Bernoulli
distributions we introduce a shared constant C that is not a ran-
dom variable and is shared across all likelihood terms across
classes (like softmax) and -importantly- all images. Namely,
our Bernoulli variables are modelled as y(i)k ⇠ Bernoulli(qk),
where

q(i)k = q(y(i)k |x(i), X\(i)) =
exp(z(i)k)

C(x(i), X\(i))
=

exp(z(i)k)

C(X)
. (4)

Note that, as intended, the normalization constant is shared
between samples and does not depend on specific classes.
Therefore, the predictions modelled by the Bernoulli random
variables are still binary but not independent. As such, qua-
sibinary classifiers can seamlessly work in multiple-label or
zero-label setting, where an image may contain several objects
from different classes or none at all. In the case of multiple
labels present in an image, each of the Bernoulli variables shall
return their confidence in the class being present or not, albeit
these confidences are not independent to each other. And in
the case the image contains no relevant objects, the Bernoulli
variables shall all return low confidence without being forced
to either select wrongly one of the classes as being present or
to assign the same likelihood to all wrong classes.

For the quasibinary classifiers we use the same scoring
function as the binary and softmax classifiers, that is an
exponential exp(·), which ensures positivity. Importantly, note
that now the normalization function depends on all the training
data, C(X). Namely, we have a normalization function that is
shared across all classes and training data points, as it depends
on the logits of all the training data points. This is crucial,
since (i) a shared normalization function across classes is able
to couple individual binary classifiers together, thus jointly
optimizing them while taking into account the knowledge of
how many labels are present. Moreover, (ii) having a shared
normalization function across training data points allows the
quasibinary scoring functions to “communicate” with each
other. Thus, the classifiers learn to predict confidence scores
that are comparable across classes and different data points,
thus returning better calibrated probabilities.

As with ensembles of binary classifiers, the probability
output space is complemented by p̄k = 1 � pk, thus having
the total sum p̄k + pk = 1, which is a requirement for a valid
probability space. Furthermore, for a valid probability space
we need to make sure that 0 < pk < 1, which is possible
by a careful choice of an activation function for the classifier
neurons. In the end, the joint likelihood is equal to

p(Y |X) =
Y

i

p(y(i)|X) =
Y

i

p(y(i)|x(i), X\(i)), (5)

where the conditioning variables x(i), X\(i)) together make up
for the X variable in the normalization constant C(X).

Choosing normalization function C(X). Clearly, the
choice of the normalization function is critical. There exist
several requirements.

First, we want our quasibinary classifiers to be jointly
optimized while exploiting the free prior knowledge of the
number of labels per training sample, i.e. #label = n where
n 2 [0, 1, · · · ,K]. We can show that this prior knowledge
is equivalent to the following constraint in the predicted
probability qk,

X

k

qk = #label. (6)

We provide the proof in the supplementary material. Note that
the reason for the sum of all qk being possibly greater than 1 is
that the presence (or not) of the various labels yk in a training
sample is not mutually exclusive. As a special case, consider
#label=1, equation (6) is exactly what the softmax classifier
enforces. A second requirement regarding the normalizing
function is computational tractability, as depending on all data,
x(i), X\(i), is potentially prohibitive.

B. Algorithm

In the previous section we explained that the normalization
function of quasibinary classifiers is a function shared across
classes and across data points. As this normalization function
is shared across all data points and classes, it needs to be a
constant function. This constant normalization function must
then be learned throughout the training so as to satisfy several
constraints. First, by the end of the training the probability
estimates must lie within the [0, 1] range. Second, the normal-
ization function must be trained to adhere to the constraint of
equation (6). That is, we want our quasibinary classifiers to
satisfy

argmax
X

i,k

y(i)k log(q(i)k) (7)

s.t. q(i)k 2 [0, 1] 8i, k (8)
X

k

q(i)k = #labels(i) (9)

Similar to stochastic gradient descent, we rely on stochastic
mini-batches B instead of the whole training set.

Training. Rather than enforcing the constraint in equa-
tion (6) for all samples, we relax the constraint to batch
level for computational tractability. Namely, given that our
normalizing function is a constant we have that

BX

i

KX

k

exp(z(i)k)/C =
X

i

#label(i)

) C =
1

N

BX

i=1

KX

k=1

exp(z(i)k) (10)

where N is the total number of labels a batch of data has.
Following [21] we resort to Lagrange relaxation to derive the
final learning objective and optimize for the model parameters
✓

L(✓) = 1

B

BX

i=1

KX

k=1

y(i)k · log q(i)k �max(log q(i)k , 0), (11)

where log q(i)k = z(i)k � logC (12)

= N

Test

Test:
• #label per test sample is unknown.
• Use the learned constant C.
• 𝑞!

(,)= min exp(𝑧!
,) /C, 1

0k 30k 60k0k 30k 60k

1.6e9

8e8

0

80

60

0

(b) Quasibinary(a) Softmax

!"#$[&'()*(,)]
/01[&'()*(,)]

IterationIteration

Fig. 2: The normalization function C(X) converges over
time to a constant value on CIFAR100. We observe that the
mean and variance of the softmax normalization are up to 8x
larger than for the quasibinary normalization. The variance is
extreme due to alternating spikes (from 1.6e9 to 1e2). The
fluctuations continue with no convergence. That is expected,
as for softmax the normalization needs not to converge for
accurate classification. However, a fluctuating normalizing
constant means that scores between different images are hardly
comparable. Overall, softmax behaves completely opposite to
the quasibinary.

The summands correspond to the losses by the qk likelihood
terms. The second term makes sure that qk yields by the end
of the training a valid probability (in log-space the maximum
probability is 0).

Note that because of the Lagrange relaxation, it is not

theoretically guaranteed that qk will always be within the
(0, 1) range and thus yield a probability. However, we find
the optimizer is able to find good enough solution to satisfy
the constraint. In practice, we only observed a negligible
amount (⇠ 0.1%) of violations i.e. (qk > 1) on test data,
which are simply clipped to [0,1] to makes sure qk are proper
probabilities. Similar optimizations for learning to compute
probabilities were also previously proposed in [22] with suc-
cess. Note also that during training time as the model gets
updated per iteration, C varies till convergence.

Training in batches. It is important to note that we define
the normalization function in equation (10) as a batch-level
implementation of equation (6). This means that the number
of labels changes per image. Also, just like other multi-label
classification settings, the total number of classes K is fixed
both at training and test. As the training is in batches, with
imbalanced datasets it is important to account for the class
frequencies in the batch constitution. We simply follow the
spirit of SGD to randomly select a mini-batch of samples [8],
[12], [18].

Testing. After training we substitute the normalization
function C(X) in equation (4) with the moving average of
C(mavg) as a constant to make prediction at test time. Thus,
unlike softmax classifiers that assume #label=1 on test data
to compute normalization factor, we do not need to make any
such assumptions.

Moving average of normalization constant. Since it is
inefficient to compute at test time the normalization factor C
based on training data, we track a moving average of C(t)

over training iterations,

C(mavg) = C(mavg) + ↵ · C(t), (13)

where C(t) is the constant normalization function at iteration t,
see Fig 2. This is similar to batch-normalization. Note that just
like in batch normalization, the ↵ smooths out the fluctuations
and helps the learnt constant to converge to a single value
consistent for all images, as shown in Fig. 2. Further, we
empirically find that the training is not negatively affected by
the moving average computation in terms of accuracy. We find
that the algorithm is rather robust in the choice of ↵ with the
differences in the variance of C(mavg) up to 1e-2. We find that
setting ↵ = 0.1 is good enough.

IV. RELATED WORK

A. Zero-label problems

In general, zero-label data refers to irrelevant samples that
belong to neither class of the in-distribution training data.
Recent deep models achieve good accuracy on in-distribution
data, but are known to be over-confident on out-of-distribution
data [10], [11]. Based on statistics of the softmax prediction,
Hendrycks and Gimpel [10] introduce a baseline detector
to differentiate misclassified samples from out-of-distribution
samples. They point out the softmax probabilities have a poor
direct correspondence to model confidence, but do not provide
a solution. Liang et al. [5] find that using temperature scaling
and adding small perturbations to the input data increases the
statistical significance of the softmax output for the in- and
out-of-distribution samples. This leads to an improvement in
detection performance.

Passively detecting zero-label out-of-distribution data based
on a trained model is not enough. Rather, one may opt to
build a model that is aware of out-of-distribution data during
training. To do so, Lee et al. [6] add two additional loss
terms upon the standard cross-entropy loss to train a softmax
classifier. The first loss models out-of-distribution data by
enforcing the softmax to output a uniform distribution predic-
tion. The second loss guides a generative adversarial network
to generate the most effective out-of-distribution samples for
training. In contrast, Hein et al. [11] introduce noise data
as out-of-distribution samples during training. With the same
intention as Lee et al. [6] to encourage an uniform distribution
prediction for out-of-distribution data, Hein et al. [11] propose
a loss function that suppresses the largest predicted confidence
from softmax.

In this paper, we continue the line of work on explicitly
modeling out-of-distribution data. However, instead of intro-
ducing new losses for the softmax classifier, we introduce
the quasibinary classifier which is able to handle out-of-
distribution data by design.

B. Multi-label problems

In most real life classification problems, one sample may
be associated with multiple labels at the same time, rather
than just one. For example, an image from a social network
can have multiple user tags and a medical image may show

Convergence of C

(b) Prediction matrix: P = {!"
($)}(a) Logits matrix: Z = {&"

($)}

1

B

1 Kk

i

1

B

1 Kk

i
!"
($) = ()*+

,-./0(12.342)

(c) Label matrix: Y = {5"
($)}

1

B

1 Kk

i

1
1
1
2
3
0
0

1-label samples

n-label samples

0-label samples

labels

6788

Classes

Ba
tc

h
siz

e

(b) Probability matrix 𝐏 = {𝑞!
(#)}

𝑞!
(#) =

exp 𝑧!
(#)

𝐶

More information & time for questions
at our poster.

Thank you!

