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How to learn symbolic data?

1. Symbolic data often exhibits hierarchical anatomy. For example

Tree-like structure of

Graphs.

WordNet-Lexical

database. Phylogenetic Tree.

2. How to learn symbolic data with deep learning algorithms? It is

important to preserve the semantic/functional relationship between

entities in the data - Nickel and Kiela [2018].

WordNet Visualization - http://wordvis.com/about.html

Phylogenetic Tree - https://github.com/glouwa/d3-hypertree
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Manifold Hypothesis

1. Data lies on a low-dimensional manifold embedded in input space.

2. Resurgence of Manifold hypothesis - with explicit assumption of the

underlying geometry - Spherical/Hyperbolic.

Pixels of images lie on a natural image manifold.

Figure : Bengio [2012]
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Hyperbolic Space Hn

1. Euclidean space introduces massive distortions when modelling

hierarchical data.

Trying to embed a binary tree in Euclidean space, we quickly run out of space. Notice how

unrelated nodes are forced together.

2. Hyperbolic space provides an exciting alternative - Non-Euclidean

geometry with constant negative curvature - Space grows

exponentially!
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Probabilistic Inference in

Hyperbolic Space



Wrapped Normal Distribution in Hn

1. Authors Nagano et al. [2019]

propose a Wrapped Normal

Distribution on the Lorentz model

of the Hyperbolic space.

2. Lorentz model - a Riemannian

manifold (L, gL), where L = {x ∈
Rn+1 : 〈x, x〉L = −1, xo > 0} and

the Minkowski inner product

defined by,

Inner product

〈x , y〉L := −x0y0 + x1y1 + ....+ xnyn

Lorentz Distance Metric

dL(x, y) = arcosh(−〈x, y〉L)

Figure Lorentz Model : Nickel and Kiela [2018]
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Constructing Wrapped Normal Distribution

1. Use a combination of Parallel

Transport and Exponential Map to

construct a Normal distribution on

a Riemannian manifold.

2. Sample from a Gaussian

distribution defined in the tangent

space at µ0 = 0. Use Parallel

transport and Exponential map to

map the point onto the manifold.

3. How does this help probabilistic

inference problems?

Figure:Nagano et al. [2019].
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Gaussian Word Embeddings (Vilnis and McCallum [2015])

1. Map lexically distributed representations to a density instead of

point vectors.

2. Advantages - Better expression of Asymmetry and Uncertainty.

Figure Lorentz Model : Nickel and Kiela [2018]
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Word Embeddings in Hyperbolic Space

1. Probabilistic Word Embeddings in hyperbolic space - (Nagano et al.

[2019])

7



Going beyond Hyperbolic space



Going Beyond Hyperbolic Space - Motivation

1. Can we obtain more powerful representations, if we go beyond

hyperbolic space?

2. Yes! Symbolic data also exhibit properties such as Causality, in

addition to hierarchy. Hyperbolic space fails to account for this

property.

3. Pseudo-Riemannian manifolds such as Lorentzian manifolds are more

natural embedding spaces - Clough and Evans [2017].

Citation networks exhibit property such as Causality in addition to Hierarchy.

Embedding the networks in Lorentzian manifolds preserves the causal structure.
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Kinematic Space

1. We propose an auxiliary Lorentzian space called Kinematic Space - a

space of oriented geodesics.

2. Inspired from Integral Geometry [Santaló and Kac [2004]] and

Theoretical Physics [Czech et al. [2015]].

3. Powerful mathematical framework that can transform geometrical

information from one space to another.
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Crofton’s Formula

1. Suppose we are interested in measuring the length of a curve C on

an Euclidean plane, we can draw a number of tangents t to the

curve. The equation of the straight line given by -

x cos θ + y sin θ − l = 0 (1)

2. where θ is the polar angle and l is the distance of straight line from

the origin. We can estimate the length of the curve C by the

Crofton’s formula [Santaló and Kac [2004]].
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Crofton’s Formula

Crofton’s Formula

Length = 1
4

∫ 2π

0
dθ
∫ +∞
−∞ η(θ, l)dl

1. η(θ, l) gives the intersection number of the tangents and the curve.

2. The space of oriented geodesics panning θ ∈ [0, 2π] and

l ∈ (−∞,∞) is called the Kinematic Space of the Euclidean plane.

3. We can extend this formulation to hyperbolic space - Straight lines

replaced by Geodesics.
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Crofton’s Formula in Hn

1. Equation of Geodesic -

tanh ρ cos(θ̂ − θ) = cosα (2)

2. α is the opening angle of the geodesic and θ is the angular

coordinate of the center of the geodesic. The Kinematic Space of

the hyperbolic plane is now the space of geodesics panned by

θ ∈ [0, 2π] and α ∈ [0, π].

3. The length of the curve can be interpreted as volume of lines

intersecting the curve!
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Kinematic Space (Ks)

1. Kinematic space - a Lorentzian

geometrical space of oriented

geodesics.

2. Geodesics γ are represented as

Points in Kinematic space.

3. Can transform geometrical

information from one space to

another.

Figure: Czech et al. [2015]
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Kinematic space as a Geometric Inductive

1. Lorentz model is the preferred

model of hyperbolic geometry,

computationally tractable -

Mathieu et al. [2019], Nickel and

Kiela [2017], Bose et al. [2020].

2. We propose to use Poincaré upper

half plane model HUP as a

geometrical inductive for deep

representation learning - Rarely

considered in literature.

3. HUP 
Ks Some Computationally

Tractable Manifold
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de Sitter space

What is de Sitter space?

Let deS2 be the (d + 1) dimensional de Sitter space in the (d + 2)

dimensional Minkowski space M visualized as a single sheeted

hyperboloid with pseudo-radius λ given by

−z20 + z21 + z23 + ...+ z2n = λ2 = 1
K .

A maximally symmetric, positive curvature, Lorentzian manifold,

visualized as a single sheeted hyperboloid.
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de Sitter space (deS2) as the Kinematic space for HUP

Proposition 1

The Kinematic space (Ks) of the upper half-plane model (HUP) is

the (d + 1) dimensional de Sitter space (deS2) visualized as a

single sheeted hyperboloid in the Minkowski space Md+2, and

there is a canonical identification between the geodesics γ ∈ HUP

and the points in Ks .

Proposition 2

For every geodesic γ that can be drawn on HUP , we can find a

unique plane p intersecting HUP , whose normal n at the origin

corresponds to a point in deS2.
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de Sitter space

Induced Distance Metric

ddeS2(x, y) = λ arcosh

(
−〈x, y〉L

λ2

)
(3)

Exponential Map and Log Map

Exponential Map expp : TpdeS2 → deS2

expp(v) = cosh(
√
K ||v||L)p + v

sinh(
√
K ||v||L)√

K ||v||L
(4)

Log Map logp : TpdeS2 → deS2

logp(y) =
arcosh(−K 〈x, y〉L)

sinh(arcosh(−K 〈x, y〉L))
(y − K 〈x, y〉Lp) (5)
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Wrapped Normal Distribution in de Sitter space

1. We extend the formulation of Wrapped Normal Distribution in

Lorentz model by authors [Nagano et al. [2019]] to de Sitter space.

2. Sampling a vector v from the Gaussian distribution N (0,Σ) defined

over Rn.

3. Parallel transporting v from the tangent space o to the tangent

space of new point u to obtain j by using the formula,

PTo→u(v) = v +
K 〈y , u〉L

1 + K 〈o, u〉L
(o + u) (6)

4. Map the point j to the manifold using the exponential map at u

given by Equation (Bose et al. [2020]).

log g(z) = log g(v)− (n − 1) log

(
sinh ||j||
||j||

)
(7)
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Probabilistic Word Embeddings in Kinematic Space
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We compare our probabilistic word embedding framework with (Vilnis and Mc-

Callum [2015]) and (Nagano et al. [2019]).

Euclid Hyperbolic Ours

Dimension Rank MAP Rank MAP Rank MAP

5 70.15 ± 3.76 0.15± 0.01 90.81 ± 8.01 0.20 ± 0.01 4.23 ± 2.98 0.53 ± 0.13

10 24.06 ± 8.85 0.43 ± 0.02 15.67 ± 4.78 0.53 ± 0.07 1.43 ± 0.01 0.86 ± 0.12

20 13.63 ± 1.69 0.65 ± 0.04 8.27 ± 2.59 0.71 ± 0.06 2.05 ± 1.33 0.94 ± 0.06

50 6.43 ± 2.17 0.75 ± 0.05 4.84 ± 0.95 0.74 ± 0.01 1.50 ± 0.23 0.97 ± 0.00

We compare our proposed method and the hyperbolic version Nagano et al.

[2019] with the deterministic embeddings framework proposed by authors in

Nickel and Kiela [2017] on the WordNet-Noun dataset.

Poincaré Nickel and Kiela [2017] Hyperbolic Ours

Dimension Rank MAP Rank MAP Rank MAP

5 4.9 ± 0.00 0.823 ± 0.00 90.81 ± 8.01 0.20 ± 0.01 4.23 ± 2.98 0.53 ± 0.13

10 4.02 ± 0.00 0.851±0.00 15.67 ± 4.78 0.53 ± 0.07 1.43 ± 0.01 0.86 ± 0.12

20 3.84 ± 0.00 0.855 ± 0.00 8.27 ± 2.59 0.71 ± 0.06 2.05 ± 1.33 0.94 ± 0.06

50 3.98 ± 0.00 0.86 ± 0.00 4.84 ± 0.95 0.74 ± 0.01 1.50 ± 0.23 0.97 ± 0.00
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Effect of Curvature and δ− hyperbolicity

1. δ− hyperbolicity measures the Tree-likeliness of the data.

2. The smaller δ value =⇒ the data can be isometrically embedded in

hyperbolic space.

3. Changing curvature, effectively makes space more hyperbolic =⇒
better MAP and Rank values.

Effect of curvature on learning word embeddings.

Curvature K=2 K=3 K=5

Dimension Rank MAP Rank MAP Rank MAP

5 24.77± 18.69 0.24 ± 0.12 4.33± 2.51 0.53± 0.01 4.22±2.98 0.53± 0.13

10 2.22± 0.10 0.79± 0.04 1.66± 0.62 0.85± 0.17 1.44± 0.00 0.86 ± 0.12

20 2.05± 1.33 0.94 ± 0.06 1.61± 0.23 0.80± 0.21 13.00± 15.39 0.60± 0.33

50 1.50± 0.23 0.96± 0.01 3.00 ± 0.31 0.78 ± 0.11 0.58 ± 0.29 8.94 ± 10.92
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Summary

1. We introduce Kinematic space, an auxiliary Lorentzian geometry in

the context of deep representation learning for hierarchical data.

2. Leveraging this formulation, we show that learning representations in

the upper half-plane model is equivalent to learning in a maximally

symmetric pseudo-Riemannian manifold called de Sitter space,

where Riemannian optimization methods are applicable.

3. We formulate Wrapped Normal Distribution in Kinematic Space and

use it for probabilistic word embeddings.
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Questions?
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