

BG-Net: Boundary-Guided Network for Lung Segmentation on Clinical CT Images

Rui Xu^{*†‡}, Yi Wang^{§†‡}, Tiantian Liu^{§†‡}, Xinchen Ye^{*†‡}, Lin Lin^{*†‡}, Yen-Wei Chen[¶], Shoji Kido^{||} and Noriyuki Tomiyama^{||} *DUT-RU International School of Information Science & Engineering, Dalian University of Technology, Dalian, China [†]DUT-RU Co-Research Center of Advanced ICT for Active Life, Dalian, China [‡]Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, China [§]College of Software, Dalian University of Technology, Dalian, China [¶]College of Information Science and Engineering, Ritsumeikan University, Shiga, Japan ^{||}Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, Osaka, Japan

Background

- Quick or early diagnosis of lung diseases is crucial in clinics, especially for COVID-19 at present.
- Computer-aided diagnosis system of lung CT images.

Lung CT Image

Ground Truth

Background

- Quick or early diagnosis of lung diseases is crucial in clinics, especially for COVID-19 at present.
- Computer-aided diagnosis system of lung CT images.
- Disconnection of adjacent tips or trachea.
- Lung boundary can provide visual cues that can help radiologist to identify the lung regions

Boundary information

Ground Truth

Segmentation Result

The Proposed Boundary-Guided Network

BG-Net: Boundary-Guided Network for Lung Segmentation on Clinical CT Images

ICPR-2020

The Proposed Boundary-Guided Network

BG-Net: Boundary-Guided Network for Lung Segmentation on Clinical CT Images

ICPR-2020

Datasets and Evaluation Metrics

Datasets	Osaka	StructSeg	HUG	VESSEL12	COVID-19- CT-Seg
Total	217	50	108	20	20

Dice coefficient (DSC)

$$DSC = \frac{2|P \cap G|}{|P| + |G|}$$

Average surface distance (ASD)

Hausdorff distance (HD)

$$\begin{split} ASD(Ps,Gs) &= mean(A\vec{S}D(Ps,Gs),A\vec{S}D(Gs,Ps)) \\ A\vec{S}D(Ps,Gs) &= \frac{1}{|P|} \sum_{p \in Ps} \min_{g \in Gs} d(p,g) \\ HD(Ps,Gs) &= max(\vec{HD}(Ps,Gs),\vec{HD}(Gs,Ps)) \\ \vec{HD}(Ps,Gs) &= \max(\vec{HD}(Ps,Gs),\vec{HD}(Gs,Ps)) \end{split}$$

ICPR-2020

Result : Ablation Study

Dataset	Method	SB	BB	BAGM	DSC		ASD			HD			
					Whole	Left	Right	Whole	Left	Right	Whole	Left	Right
	Method-A	\checkmark			0.9824	0.9772	0.9846	0.7939	0.9321	0.7419	4.1590	4.9200	3.9795
Osaka	Method-B	\checkmark	\checkmark		0.9844	0.9814	0.9852	0.6518	0.8204	0.6396	3.0413	4.3248	3.0182
	Method-C	\checkmark	\checkmark	\checkmark	0.9858	0.9825	0.9865	0.5878	0.6230	0.5728	2.7715	3.5899	2.7256
	Method-A	\checkmark			0.9619	0.9596	0.9621	0.4468	0.5350	0.3764	2.0039	3.0486	1.5731
StructSeg	Method-B	\checkmark	\checkmark		0.9638	0.9598	0.9654	0.3613	0.4913	0.3500	1.4366	1.9454	1.2243
	Method-C	\checkmark	\checkmark	\checkmark	0.9647	0.9612	0.9666	0.3437	0.3684	0.3414	1.3952	1.8112	1.1828

Result : Comparison with the state-of-the-art methods

Dataset	Method	DSC	ASD	HD	
	Harrison et al.	0.9790	0.3610	-	
HUC	Jeovane et al.	0.9867	-	-	
nug	LaLonde et al.	0.8892	-	37.1710	
	Ours	0.9889	0.1304	0.6655	
	Jeovane et al.	0.9919	-	-	
VECCEI 12	Soliman et al.	0.9900			
VESSEL12	Ours	0.9945	0.4981	1.4041	

ICPR-2020

Result : Comparison with the state-of-the-art methods

Dataset	Method	DSC		ASD		HD		
		Left	Right	Left	Right	Left	Right	
	HED	0.8064	0.8207	11.2448	9.9281	64.1505	60.8332	
COVID-19-CT-Seg	FCN	0.9233	0.9298	10.1031	9.7388	54.8521	53.5381	
8	U-Net	0.9481	0.9501	4.7416	4.5995	46.7094	43.7777	
	Ma et al.	0.9220	0.9550	-	8 .		3 - 0	
	Ours	0.9624	0.9671	2.8405	1.4677	15.8190	12.5875	

COVID-19-CT-Seg

(a) lung CT image

(b) ground truth

(c) prediction result

ICPR-2020

- Even some complex boundaries can be segmented by the proposed method.
- The proposed method is less affected by the pathology of the lungs.

Conclusion

- We propose a boundary-guided network (BG-Net), which exploits the information of lung regions and the corresponding boundaries for accurate lung segmentation on clinical CT images.
- We design the boundary attention guidance modules(BAGMs) that can efficiently guide the BG-Net to learn more powerful lung segmentation features.

ICPR-2020

• We evaluate the proposed method on a private dataset and four public datasets including a COVID-19 dataset. Experimental results show that our proposed method can segment lungs more accurately and outperform several other leading methods.

Thanks For Your Attention

