Theodoros Georgiou.





# Introduction

2

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

CNNs can suffer from diverse issues, such as:

• exploding, vanishing gradients

• scaling-based weight space symmetry

• covariant-shift

# **Existing approaches**

3

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

## Weight regularization

- weight decay
- weight normalization
- $\bullet$  weight orthogonalization

• • • •

# **Existing approaches**

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

## Weight regularization

- weight decay
- weight normalization
- $\bullet$  weight orthogonalization

• • • •

## Activation normalization

- Batch normalization
- Group normalization
- Kalman normalization

• • • •

# **Oblique manifold**

Given weight vector:

$$\mathbf{W} \in \mathbb{R}^{n \times p},\tag{1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

4

 $\pmb{p}$  is the dimensionality of each weight vector of a filter, while  $\pmb{n}$  is the number of filters. The Oblique manifold defines:

$$ddiag(WW^{T}) = I$$
<sup>(2)</sup>

## **Proposed method - Norm Loss**

$$L_{nl} = \sum_{c_o=1}^{C_o} \left( 1 - \sqrt{\sum_{c_i=1}^{C_i} \sum_{i=1}^{F_h} \sum_{j=1}^{F_w} w_{ijc_ic_o}^2} \right)^2$$
(3)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ ○ ○

5

The loss is penalizing the weight vector of each neuron if its Euclidean norm is different from one.

$$\boldsymbol{L_{total} = \boldsymbol{L_{target} + \lambda_{nl} \cdot \boldsymbol{L_{nl}}}$$
(4)

Effect: Slowly steer the weight vectors to unit norm.

## Connection to weight decay

Weight decay update rule:

$$\frac{\partial L_{wd}}{\partial w_{ijc_ic_o}} = 2w_{ijc_ic_o} \tag{5}$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

6

Norm Loss update rule:

$$\frac{\partial L_{nl}}{\partial w_{ijc_ic_o}} = 2w_{ijc_ic_o} \left(1 - \frac{1}{\|w_{c_o}\|}\right) \tag{6}$$

590

# Cross entropy during training (CIFAR-10)



590

8

# Hyper parameter robustness



# **Results (CIFAR-10)**

-

| model                      | regul.    | error                |
|----------------------------|-----------|----------------------|
| ResNet110                  | wd (repr) | 6.32(6.568)          |
| $\operatorname{ResNet110}$ | wd        | 6.43(6.61)           |
| $\operatorname{ResNet110}$ | WN        | - (7.56)             |
| $\operatorname{ResNet110}$ | PBWN      | - (6.27)             |
| $\operatorname{ResNet110}$ | ONI       | - (6.56)             |
| $\operatorname{ResNet110}$ | nl (Ours) | 5.9 ( <b>5.996</b> ) |
| WRN-28-10                  | wd (repr) | 3.9(3.966)           |
| WRN-28-10                  | wd        | - (3.89)             |
| WRN-28-10                  | OLM       | - ( <b>3.73</b> )    |
| WRN-28-10                  | nl (Ours) | $4.47 \ (4.662)$     |
|                            |           |                      |

# **Results (CIFAR-100)**

**10** 

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

| model                      | regul.    | error                   |
|----------------------------|-----------|-------------------------|
| ResNet110                  | wd (repr) | 27.9(28.398)            |
| $\operatorname{ResNet110}$ | WN        | - (28.38)               |
| $\operatorname{ResNet110}$ | PBWN      | - (27.03)               |
| $\operatorname{ResNet110}$ | nl (Ours) | 26.24 ( <b>26.526</b> ) |
| WRN-28-10                  | wd (repr) | $18.85\ (19.138)$       |
| WRN-28-10                  | wd        | - (18.85)               |
| WRN-28-10                  | OLM       | - (18.76)               |
| WRN-28-10                  | OLM-L1    | - ( <b>18.61</b> )      |
| WRN-28-10                  | nl (Ours) | $18.57 \ (18.648)$      |

# Conclusions

11

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

## Norm Loss:

- comparable and sometimes better performance to the state of the art on popular architectures and benchmarks
- lower computational complexity than most weight regularization methods
- High convergence speed
- less sensitive to hyper parameters such as batch size and regularization factor

**12** 

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

## Thank you!